ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Monitoring of Robot Swarms with Swarm Signal Temporal Logic

103   0   0.0 ( 0 )
 نشر من قبل Ruixuan Yan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we develop a distributed monitoring framework for robot swarms so that the agents can monitor whether the executions of robot swarms satisfy Swarm Signal Temporal Logic (SwarmSTL) formulas. We define generalized moments (GMs) to represent swarm features. A dynamic generalized moments consensus algorithm (GMCA) with Kalman filter (KF) is proposed so that each agent can estimate the GMs. Also, we obtain an upper bound for the error between an agents estimate and the actual GMs. This bound is independent of the motion of the agents. We also propose rules for monitoring SwarmSTL temporal and logical operators. As a result, the agents can monitor whether the swarm satisfies SwarmSTL formulas with a certain confidence level using these rules and the bound of the estimation error. The distributed monitoring framework is applied to a swarm transporting supplies example, where we also show the efficacy of the Kalman filter in the dynamic generalized moments consensus process.



قيم البحث

اقرأ أيضاً

What is the frequency content of temporal logic formulas? That is, when we monitor a signal against a formula, which frequency bands of the signal are relevant to the logic and should be preserved, and which can be safely discarded? This question is relevant whenever signals are filtered or compressed before being monitored, which is almost always the case for analog signals. To answer this question, we focus on monitors that measure the robustness of a signal relative to a specification in Signal Temporal Logic. We prove that robustness monitors can be modeled using Volterra series. We then study the Fourier transforms of these Volterra representations, and provide a method to derive the Fourier transforms of entire formulas. We also make explicit the measurement process in temporal logic and re-define it on the basis of distributions to make it compatible with measurements in signal processing. Experiments illustrate these results. Beyond compression, this work enables the integration of temporal logic monitoring into common signal processing toolchains as just another signal processing operation, and enables a common formalism to study both logical and non-logical operations in the frequency domain, which we refer to as Logical Signal Processing.
A framework for the event-triggered control synthesis under signal temporal logic (STL) tasks is proposed. In our previous work, a continuous-time feedback control law was designed, using the prescribed performance control technique, to satisfy STL t asks. We replace this continuous-time feedback control law by an event-triggered controller. The event-triggering mechanism is based on a maximum triggering interval and on a norm bound on the difference between the value of the current state and the value of the state at the last triggering instance. Simulations of a multi-agent system quantitatively show the efficacy of using an event-triggered controller to reduce communication and computation efforts.
We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control syn thesis problem for single-agent systems under signal temporal logic tasks are, however, subject to a high computational complexity. Methods for multi-agent systems scale at least linearly with the number of agents and induce even higher computational burdens. We propose a computationally-efficient control strategy to solve the multi-agent control synthesis problem that results in a robust satisfaction of a set of signal temporal logic tasks. In particular, a decentralized feedback control law is proposed that is based on time-varying control barrier functions. The obtained control law is discontinuous and formal guarantees are provided by nonsmooth analysis. Simulations show the efficacy of the presented method.
This paper studies the robust satisfiability check and online control synthesis problems for uncertain discrete-time systems subject to signal temporal logic (STL) specifications. Different from existing techniques, this work proposes an approach bas ed on STL, reachability analysis, and temporal logic trees. Firstly, a real-time version of STL semantics and a tube-based temporal logic tree are proposed. We show that such a tree can be constructed from every STL formula. Secondly, using the tube-based temporal logic tree, a sufficient condition is obtained for the robust satisfiability check of the uncertain system. When the underlying system is deterministic, a necessary and sufficient condition for satisfiability is obtained. Thirdly, an online control synthesis algorithm is designed. It is shown that when the STL formula is robustly satisfiable and the initial state of the system belongs to the initial root node of the tube-based temporal logic tree, it is guaranteed that the trajectory generated by the controller satisfies the STL formula. The effectiveness of the proposed approach is verified by an automated car overtaking example.
Rapid performance recovery from unforeseen environmental perturbations remains a grand challenge in swarm robotics. To solve this challenge, we investigate a behaviour adaptation approach, where one searches an archive of controllers for potential re covery solutions. To apply behaviour adaptation in swarm robotic systems, we propose two algorithms: (i) Swarm Map-based Optimisation (SMBO), which selects and evaluates one controller at a time, for a homogeneous swarm, in a centralised fashion; and (ii) Swarm Map-based Optimisation Decentralised (SMBO-Dec), which performs an asynchronous batch-based Bayesian optimisation to simultaneously explore different controllers for groups of robots in the swarm. We set up foraging experiments with a variety of disturbances: injected faults to proximity sensors, ground sensors, and the actuators of individual robots, with 100 unique combinations for each type. We also investigate disturbances in the operating environment of the swarm, where the swarm has to adapt to drastic changes in the number of resources available in the environment, and to one of the robots behaving disruptively towards the rest of the swarm, with 30 unique conditions for each such perturbation. The viability of SMBO and SMBO-Dec is demonstrated, comparing favourably to variants of random search and gradient descent, and various ablations, and improving performance up to 80% compared to the performance at the time of fault injection within at most 30 evaluations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا