ﻻ يوجد ملخص باللغة العربية
We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3-30 keV. The X-ray emission from both galaxies is spatially resolved by Chandra; we find that hot gas dominates the E < 1-3 keV emission while ultraluminous X-ray sources (ULXs) dominate at E > 1-3 keV. The NuSTAR galaxy-wide spectra of both galaxies follow steep power-law distributions with Gamma ~ 2.6 at E > 5-7 keV, similar to the spectra of bright individual ULXs and other galaxies that have been studied by NuSTAR. We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of both galaxies restricts these sources to be either low luminosity AGN or non-AGN in nature (e.g., ULXs or crowded X-ray sources that reach L2-10 keV ~ 10^40 erg/s cannot be ruled out). Combining our constraints on the 0.3-30 keV spectra of NGC 3256 and NGC 3310 with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the SFR-normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes above 3-6 keV due to ULX populations. Our observations therefore constrain the average spectra of luminous accreting binaries (i.e., ULXs). This result is similar to the super-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that NGC 3310 exhibits a factor of ~3-10 elevation of X-ray emission over the other star-forming galaxies. We argue that the excess is most likely explained by the relatively low metallicity of the young stellar population in NGC 3310.
We present XMM-Newton EPIC observations of the two nearby starburst merger galaxies NGC 3256 & NGC 3310. The broad-band (0.3-10 keV) integrated X-ray emission from both galaxies shows evidence of multi-phase thermal plasmas plus an underlying hard no
We present results from three nearly simultaneous NuSTAR and Chandra monitoring observations between 2012 Sep 2 and 2012 Nov 16 of local star-forming galaxy NGC 253. The 3-40 keV NuSTAR intensity of the inner 20 arcsec (~400 pc) nuclear region varied
Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR dataset, comprised of three ~165 ks observations, allows spatial characterization of the
In external galaxies, molecular composition may be influenced by extreme environments such as starbursts and galaxy mergers. To study such molecular chemistry, we observed the luminous-infrared galaxy and merger NGC 3256 using the Atacama Large Milli
We report ~2 resolution Atacama Large Millimeter/submillimeter Array observations of the HCN(1-0), HCO+(1-0), CO(1-0), CO(2-1), and CO(3-2) lines towards the nearby merging double-nucleus galaxy NGC 3256. We find that the high density gas outflow tra