ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolving a Starburst Galaxy at Hard X-ray Energies: NuSTAR, Chandra, AND VLBA Observations of NGC 253

160   0   0.0 ( 0 )
 نشر من قبل Daniel Wik
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR dataset, comprised of three ~165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and VLBA monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within 100 of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy - dominated by the off-nuclear ULX and nuclear sources, which are also likely ULXs - falls steeply (photon index >~ 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the {gamma}-ray emission detected with Fermi and H.E.S.S. If NGC 253 is typical of starburst galaxies at higher redshift, their contribution to the E > 10 keV cosmic X-ray background is < 1%.



قيم البحث

اقرأ أيضاً

NuSTAR observatory, with its 3 - 78 keV broadband spectral coverage, enables the detections of the high-energy cutoff in a number of active galaxies, including several individual radio loud ones. In this work we present systematic and uniform analyse s of 55 NuSTAR spectra for a large sample of 28 radio galaxies, 20 of which are FR II galaxies. We perform spectral fitting to measure the high energy cut-off $E_{cut}$, photon index $Gamma$, reflection factor R and Fe K$alpha$ line equivalent width. Measurements of $E_{cut}$ are given for 13 sources, and lower limits for the rest. We find those $E_{cut}$ non-detections could primarily be attributed to the obviously smaller net photon counts in their spectra. This indicates that the NuSTAR spectra of the majority of our sample are dominated by the thermal corona emission, and the $E_{cut}$ distribution of the sample is indistinguishable from that of a radio quiet one in literature. The flatter NuSTAR spectra we observed, comparing with radio quiet sources, are thus unlikely due to jet contamination. The radio galaxies also show weaker X-ray reflection (both in R and Fe K$alpha$ line EW) comparing with radio quiet ones. Combining with the radio quiet sample we see a correlation between R and EW, but with considerably large scatter. Notably, the radio loud and quiet sources appear to follow a common $Gamma$ - R correlation trend, supporting the outflowing corona model for both populations in which higher bulk outflowing velocity yields weaker reflection and flatter X-ray slope.
Very-high-energy (VHE; E >100 GeV) and high-energy (HE; 100 MeV < E < 100 GeV) data from gamma-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analysed in order to investigate the non-therm al processes in the starburst galaxy NGC 253. The VHE gamma-ray data can be described by a power law in energy with differential photon index Gamma=2.14 pm 0.18_stat pm 0.30_sys and differential flux normalisation at 1 TeV of F_0 = (9.6 pm 1.5_stat (+5.7,-2.9)_sys) x 10^{-14} TeV^{-1} cm^{-2} s^{-1}. A power-law fit to the differential HE gamma-ray spectrum reveals a photon index of Gamma=2.24 pm 0.14_stat pm 0.03_sys and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 pm 1.0_stat pm 0.3_sys) x 10^{-9} cm^{-2} s^{-1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE gamma-ray data results in a differential photon index Gamma=2.34 pm 0.03 with a p-value of 30%. The gamma-ray observations indicate that at least about 20% of the energy of the cosmic rays capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE gamma-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the gamma-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of cosmic-ray sources in the starburst region.
We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive ga laxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of $1.7times10^{10} L_{Kodot}$, allowing us to investigate the populations in a relatively low mass galaxy. We classify the detected X-ray sources into field LMXBs, globular cluster LMXBs, and background AGN based on identifying optical counterparts in new HST/ACS images. We detect 10 field LMXBs within the $r_{ext}$ ellipse of NGC 7457 (with semi-major axis $sim$ 9.1 kpc, ellipticity = 0.55). The corresponding number of LMXBs with $L_{x}>2times10^{37}erg/s$ per stellar luminosity is consistent with that observed in more massive galaxies, $sim 7$ per $10^{10} L_{Kodot}$. We detect a small globular cluster population in these HST data and show that its colour distribution is likely bimodal and that its specific frequency is similar to that of other early type galaxies. However, no X-ray emission is detected from any of these clusters. Using published data for other galaxies, we show that this non-detection is consistent with the small stellar mass of these clusters. We estimate that 0.11 (and 0.03) LMXBs are expected per $10^{6}M_{odot}$ in metal-rich (and metal-poor) globular clusters. This corresponds to 1100 (and 330) LMXBs per $10^{10} L_{Kodot}$, highlighting the enhanced formation efficiency of LMXBs in globular clusters. A nuclear X-ray source is detected with $L_{x}$ varying from $2.8-6.8times10^{38}erg/s$. Combining this $L_{x}$ with a published dynamical mass estimate for the central SMBH in NGC 7457, we find that $L_{x}/L_{Edd}$ varies from $0.5-1.3times10^{-6}$.
103 - D. J. Walton , C. Pinto , M. Nowak 2019
We present results from the major coordinated X-ray observing program on the ULX NGC 1313 X-1 performed in 2017, combining $XMM$-$Newton$, $Chandra$ and $NuSTAR$, focusing on the evolution of the broadband ($sim$0.3-30.0 keV) continuum emission. Clea r and unusual spectral variability is observed, but this is markedly suppressed above $sim$10-15 keV, qualitatively similar to the ULX Holmberg IX X-1. We model the multi-epoch data with two-component accretion disc models designed to approximate super-Eddington accretion, allowing for both a black hole and a neutron star accretor. With regards to the hotter disc component, the data trace out two distinct tracks in the luminosity-temperature plane, with larger emitting radii and lower temperatures seen at higher observed fluxes. Despite this apparent anti-correlation, each of these tracks individually shows a positive luminosity-temperature relation. Both are broadly consistent with $Lpropto{T}^{4}$, as expected for blackbody emission with a constant area, and also with $Lpropto{T}^{2}$, as may be expected for an advection-dominated disc around a black hole. We consider a variety of possibilities for this unusual behaviour. Scenarios in which the innermost flow is suddenly blocked from view by outer regions of the super-Eddington disc/wind can explain the luminosity-temperature behaviour, but are difficult to reconcile with the lack of strong variability at higher energies, assuming this emission arises from the most compact regions. Instead, we may be seeing evidence for further radial stratification of the accretion flow than is included in the simple models considered, with a combination of winds and advection resulting in the suppressed high-energy variability.
We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by NuSTAR and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the bro adband coverage to 0.3-20 keV. The observations were carried out in two epochs separated by approximately 10 days, and showed little spectral variation, with an observed luminosity of Lx = (4.95+/-0.11)e39 erg/s. The broadband spectrum confirms the presence of a clear spectral downturn above 10 keV seen in some previous observations. This cutoff is inconsistent with the standard low/hard state seen in Galactic black hole binaries, as would be expected from an intermediate mass black hole accreting at significantly sub-Eddington rates given the observed luminosity. The continuum is apparently dominated by two optically thick thermal-like components, potentially accompanied by a faint high energy tail. The broadband spectrum is likely associated with an accretion disk that differs from a standard Shakura & Sunyaev thin disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا