ﻻ يوجد ملخص باللغة العربية
We analyze four and five-point tree-level open string S-matrix amplitudes in the Regge limit, exhibiting some basic features which indicate longitudinal nonlocality, as suggested by light cone gauge calculations of string spreading. Using wavepackets to localize the asymptotic states, we compute the peak trajectories followed by the incoming and outgoing strings, determined by the phases in the amplitudes. These trajectories trace back in all dimensions such that the incoming strings deflect directly into corresponding outgoing ones, as expected from a Reggeon analysis. Bremsstrahlung radiation at five points emerges from the deflection point, corroborating this picture. An explicit solution for the intermediate state produced at four points in the $s$-channel exists, with endpoints precisely following the corresponding geometry and a periodicity which matches the series of time delays predicted by the amplitude. We find a nonzero peak impact parameter for this process, and show that it admits an interpretation in terms of longitudinal-spreading induced string joining, at the scale expected from light cone calculations, and does not appear to admit a straightforward interpretation purely in terms of the well-established transverse spreading. At five points, we exhibit a regime with advanced emission of one of the deflected outgoing strings. This strongly suggests early interaction induced by longitudinal nonlocality. In a companion paper, we apply string spreading to horizon dynamics.
We study string interactions in the fermionic formulation of the c=1 matrix model. We give a precise nonperturbative description of the rolling tachyon state in the matrix model, and discuss S-matrix elements of the c=1 string. As a first step to stu
The gravitational $mathcal{S}$-matrix defined with an infrared (IR) cutoff factorizes into hard and soft factors. The soft factor is universal and contains all the IR and collinear divergences. Here we show, in a momentum space basis, that the intric
The Swampland de Sitter conjecture in combination with upper limits on the tensor-to-scalar ratio $r$ derived from observations of the cosmic microwave background endangers the paradigm of slow-roll single field inflation. This conjecture constrains
The behaviour of matrix string theory in the background of a type IIA pp wave at small string coupling, g_s << 1, is determined by the combination M g_s where M is a dimensionless parameter proportional to the strength of the Ramond-Ramond background
Recently Sekino and Yoneya proposed a way to regularize the world volume theory of membranes wrapped around $S^1$ by matrices and showed that one obtains matrix string theory as a regularization of such a theory. We show that this correspondence betw