ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust $s_{pm}$-wave superconductivity against multi-impurity in iron-based superconductors

121   0   0.0 ( 0 )
 نشر من قبل HuaiXiang Huang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Effects of disorder on electron-doped iron pnictides are investigated systematically based on self-consistent Bogoliubov-de Gennes equations. Multiply impurities with same scattering potential (SP) are randomly distributed in a square lattice. Probability distribution functions of normalized order parameters for different impurity concentrations $delta_{imp}$, different electron doping concentrations $delta$ are investigated for given SPs. Samples are found to be very robust against weak SP, in which order parameters do not have qualitative change even at very large $delta_{imp}$. While strong SP is able to easily break down the order parameters. For moderate SP, variations of order parameters on and around impurities strongly depend on $delta$, however the distribution functions of normalized order parameters have similar behavior as $delta_{imp}$ increases. Compared with superconducting (SC) order, the magnetic order is more sensitive to multi-impurity effect. The spatial spin density wave pattern has already been destroyed before the system loses its superconductivity. Dependence of SC order on temperature is similar to that of impurity-free case, with the critical temperature being remarkably suppressed for high $delta_{imp}$.



قيم البحث

اقرأ أيضاً

We report theoretical and experimental studies of the effect of Zn-impurity in Fe-based superconductors. Zn-impurity is expected to severely suppress sign reversed s$_pm$ wave pairing. The experimentally observed suppression of T$_c$ under Zn-doping strongly depends on the materials and the charge carrier contents, which suggests competition of $s_{++}$ and $s_{pm}$ pairings in Fe-base superconductors. We study a model incorporating both $s_{++}$ and $s_{pm}$ pairing couplings by using Bogoliubov de-Gennes equation, and show that the Zn-impurity strongly suppresses $s_{pm}$ pairing and may induce a transition from $s_{pm}$ to $s_{++}$-wave. Our theory is consistent with various experiments on the impurity effect. We present new experimental data on the Zn-doping SmFe$_{1-x}$Zn$_x$AsO$_{0.9}$F$_{0.1}$ of T$_c=$ 50K, in further support of our proposal.
The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while ot hers are very similar to d-wave states. Here we studied the self-field critical current of NdFeAs(O,F) thin films in order to extract absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the superconducting transition temperature, and find that all the deduced physical parameters strongly indicate that NdFeAs(O,F) is a bulk p-wave superconductor. Further investigation revealed that single atomic layer FeSe also shows p-wave pairing. In an attempt to generalize these findings, we re-examined the whole inventory of superfluid density measurements in iron-based superconductors show quite generally that most of the iron-based superconductors are p-wave superconductors.
A pronounced local in-gap zero-energy bound state (ZBS) has been observed by recent scanning tunneling microscopy (STM) experiments on the interstitial Fe impurity (IFI) and its nearest-neighboring (nn) sites in $mathrm{FeTe_{0.5}Se_{0.5}}$ supercond ucting (SC) compound. By introducing a new impurity mechanism, the so-called tunneling impurity, and based on the Bogoliubove-de Gennes (BDG) equations we investigated the low-lying energy states of the IFI and the underlying Fe-plane. We found the peak of ZBS does not shift or split in a magnetic field as long as the tunneling parameter between IFI and the Fe-plane is sufficiently small and the Fe-plane is deep in the SC state. Our results are in good agreement with the experiments. We also predicted that modulation of spin density wave (SDW), or charge density wave (CDW) will suppress the intensity of the ZBS.
In high-superconducting transition temperature ($T_{rm c}$) iron-based superconductors, interband sign reversal ($s_{rm pm}$) and sign preserving ($s_{rm ++}$) $s$-wave superconducting states have been primarily discussed as the plausible superconduc ting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single crystal Fe$_{1-x}$Co$_x$Se and depict a phase diagram of a FeSe system. Both superconductivity and structural transition / orbital order are suppressed by the Co replacement on the Fe sites and disappear above $x$ = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of $T_{rm c}$ against the residual resistivity is shown to be much weaker than that predicted in the case of a general sign reversal and a full gap $s_{pm}$ models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.
In the presence of both space and time reversal symmetries, an s-wave A1g superconducting state is usually topologically trivial. Here we demonstrate that an exception can take place in a type of nonsymmorphic lattice structures. We specify the demon stration in a system with a centrosymmetric space group P4/nmm, the symmetry group that governs iron-based superconductors, by showing the existence of a second-order topological state protected by a mirror symmetry. The topological superconductivity is featured by 2Z degenerate Dirac cones on the (1,0) edge, and Z pairs of Majorana modes at the intersection between the (1,1) and (1,-1) edges. The topological invariance and Fermi surface criterion for the topological state are provided. Moreover, we point out that the previously proposed s-wave state in iron-based superconductors, which features a sign-changed superconducting order parameter between two electron pockets, is such a topological state. Thus, these results not only open a new route to pursue topological superconductivity, but also establish a measurable quantity to settle one long-lasting debate on the pairing nature of iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا