ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Superconductivity in an s-wave Superconductor and Its Implication to Iron-based Superconductors

74   0   0.0 ( 0 )
 نشر من قبل Shengshan Qin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the presence of both space and time reversal symmetries, an s-wave A1g superconducting state is usually topologically trivial. Here we demonstrate that an exception can take place in a type of nonsymmorphic lattice structures. We specify the demonstration in a system with a centrosymmetric space group P4/nmm, the symmetry group that governs iron-based superconductors, by showing the existence of a second-order topological state protected by a mirror symmetry. The topological superconductivity is featured by 2Z degenerate Dirac cones on the (1,0) edge, and Z pairs of Majorana modes at the intersection between the (1,1) and (1,-1) edges. The topological invariance and Fermi surface criterion for the topological state are provided. Moreover, we point out that the previously proposed s-wave state in iron-based superconductors, which features a sign-changed superconducting order parameter between two electron pockets, is such a topological state. Thus, these results not only open a new route to pursue topological superconductivity, but also establish a measurable quantity to settle one long-lasting debate on the pairing nature of iron-based superconductors.



قيم البحث

اقرأ أيضاً

The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while ot hers are very similar to d-wave states. Here we studied the self-field critical current of NdFeAs(O,F) thin films in order to extract absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the superconducting transition temperature, and find that all the deduced physical parameters strongly indicate that NdFeAs(O,F) is a bulk p-wave superconductor. Further investigation revealed that single atomic layer FeSe also shows p-wave pairing. In an attempt to generalize these findings, we re-examined the whole inventory of superfluid density measurements in iron-based superconductors show quite generally that most of the iron-based superconductors are p-wave superconductors.
In iron-based superconductors, band inversion of $d$- and $p$-orbitals yields Dirac semimetallic states. We theoretically investigate their topological properties in normal and superconducting phases, based on the tight-binding model involving full s ymmetry of the materials. We demonstrate that a Cooper pair between electrons with $d$- and $p$-orbitals relevant to the band structure yields odd-parity superconductivity. Moreover, we present the typical surface states by solving the Bogoliubov-de Gennes equation and characterize them by topological invariants defined with crystal symmetry. It is found that there appear various types of Majorana fermions such as surface flat band, Majorana quartet and M{o}bius twisted surface state. Our theoretical results show that iron-based superconductors are promising platforms to realize rich topological crystalline phases.
Effects of disorder on electron-doped iron pnictides are investigated systematically based on self-consistent Bogoliubov-de Gennes equations. Multiply impurities with same scattering potential (SP) are randomly distributed in a square lattice. Probab ility distribution functions of normalized order parameters for different impurity concentrations $delta_{imp}$, different electron doping concentrations $delta$ are investigated for given SPs. Samples are found to be very robust against weak SP, in which order parameters do not have qualitative change even at very large $delta_{imp}$. While strong SP is able to easily break down the order parameters. For moderate SP, variations of order parameters on and around impurities strongly depend on $delta$, however the distribution functions of normalized order parameters have similar behavior as $delta_{imp}$ increases. Compared with superconducting (SC) order, the magnetic order is more sensitive to multi-impurity effect. The spatial spin density wave pattern has already been destroyed before the system loses its superconductivity. Dependence of SC order on temperature is similar to that of impurity-free case, with the critical temperature being remarkably suppressed for high $delta_{imp}$.
Topological insulators and semimetals as well as unconventional iron-based superconductors have attracted major recent attention in condensed matter physics. Previously, however, little overlap has been identified between these two vibrant fields, ev en though the principal combination of topological bands and superconductivity promises exotic unprecedented avenues of superconducting states and Majorana bound states (MBSs), the central building block for topological quantum computation. Along with progressing laser-based spin-resolved and angle-resolved photoemission spectroscopy (ARPES) towards high energy and momentum resolution, we have resolved topological insulator (TI) and topological Dirac semimetal (TDS) bands near the Fermi level ($E_{text{F}}$) in the iron-based superconductors Li(Fe,Co)As and Fe(Te,Se), respectively. The TI and TDS bands can be individually tuned to locate close to $E_{text{F}}$ by carrier doping, allowing to potentially access a plethora of different superconducting topological states in the same material. Our results reveal the generic coexistence of superconductivity and multiple topological states in iron-based superconductors, rendering these materials a promising platform for high-$T_{text{c}}$ topological superconductivity.
182 - A. A. Kordyuk 2012
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron in teraction, including the superconducting pairing. The newly discovered iron based superconductors (FeSC) promise interesting physics that stems, on one hand, from a coexistence of superconductivity and magnetism and, on the other hand, from complex multi-band electronic structure. In this review I want to give a simple introduction to the FeSC physics, and to advocate an opinion that all the complexity of FeSC properties is encapsulated in their electronic structure. For many compounds, this structure was determined in numerous ARPES experiments and agrees reasonably well with the results of band structure calculations. Nevertheless, the existing small differences may help to understand the mechanisms of the magnetic ordering and superconducting pairing in FeSC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا