ﻻ يوجد ملخص باللغة العربية
The accuracy of the many-body perturbation theory GW formalism to calculate electron-phonon coupling matrix elements has been recently demonstrated in the case of a few important systems. However, the related computational costs are high and thus represent strong limitations to its widespread application. In the present study, we explore two less demanding alternatives for the calculation of electron-phonon coupling matrix elements on the many-body perturbation theory level. Namely, we test the accuracy of the static Coulomb-hole plus screened-exchange (COHSEX) approximation and further of the constant screening approach, where variations of the screened Coulomb potential W upon small changes of the atomic positions along the vibrational eigenmodes are neglected. We find this latter approximation to be the most reliable, whereas the static COHSEX ansatz leads to substantial errors. Our conclusions are validated in a few paradigmatic cases: diamond, graphene and the C60 fullerene. These findings open the way for combining the present many-body perturbation approach with efficient linear-response theories.
A parameterized tight-binding (TB) model based on the first-principles GW calculations is developed for single layer tin diselenide (SnSe$_2$) and used to study its electronic and optical properties under external magnetic field. The truncated model
The GW method is a many-body electronic structure technique capable of generating accurate quasiparticle properties for realistic systems spanning physics, chemistry, and materials science. Despite its power, GW is not routinely applied to large comp
Recent calculations using coupled cluster on solids have raised discussion of using a $N^{-1/3}$ power law to fit the correlation energy when extrapolating to the thermodynamic limit, an approach which differs from the more commonly used $N^{-1}$ pow
We show that the equations underlying the $GW$ approximation have a large number of solutions. This raises the question: which is the physical solution? We provide two theorems which explain why the methods currently in use do, in fact, find the corr
The Self-Assembly of Nano-Objects (SANO) code we implemented demonstrates the ability to predict the molecular self-assembly of different structural motifs by tuning the molecular building blocks as well as the metallic substrate. It consists in a tw