ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable magneto-optical properties of single-layer tin diselenide: From GW approximation to large-scale tight-binding calculations

73   0   0.0 ( 0 )
 نشر من قبل Hongxia Zhong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A parameterized tight-binding (TB) model based on the first-principles GW calculations is developed for single layer tin diselenide (SnSe$_2$) and used to study its electronic and optical properties under external magnetic field. The truncated model is derived from six maximally localized wannier orbitals on Se site, which accurately describes the quasi-particle electronic states of single layer SnSe$_2$ in a wide energy range. The quasi-particle electronic states are dominated by the hoppings between nearest wannier orbitals ($t_1$-$t_6$). Our numerical calculation shows that, due to the electron-hole asymmetry, two sets of Landau Level spectrum are obtained when a perpendicular magnetic field is applied. The Landau Level spectrum follows linear dependence on the level index and magnetic field, exhibiting properties of two-dimensional electron gas in traditional semiconductors. The optical conductivity calculation shows that the optical gap is very close to the GW value, and can be tuned by external magnetic field. Our proposed TB model can be used for further exploring the electronic, optical, and transport properties of SnSe$_2$, especially in the presence of external magnetic fields.



قيم البحث

اقرأ أيضاً

Monolayers of group VA elements have attracted great attention with the rising of black phosphorus. Here, we derive a simple tight-binding model for monolayer grey arsenic, referred as arsenene (ML-As), based on the first-principles calculations with in the partially self-consistent GW0 approach. The resulting band structure derived from the six p-like orbitals coincides with the quasi-particle energy from GW0 calculations with a high accuracy. In the presence of a perpendicular magnetic field, ML-As exhibits two sets of Landau levels linear with respect to the magnetic field and level index. Our numerical calculation of the optical conductivity reveals that the obtained optical gap is very close to the GW0 value and can be effectively tuned by external magnetic field. Thus, our proposed TB model can be used for further large-scale simulations of the electronic, optical and transport properties of ML-As.
The GW method is a many-body electronic structure technique capable of generating accurate quasiparticle properties for realistic systems spanning physics, chemistry, and materials science. Despite its power, GW is not routinely applied to large comp lex assemblies due to its large computational overhead and quartic scaling with particle number. Here, the GW equations are recast, exactly, as Fourier-Laplace time integrals over complex time propagators. The propagators are then shredded via energy partitioning and the time integrals approximated in a controlled manner using generalized Gaussian quadrature(s) while discrete variable methods are employed to represent the required propagators in real-space. The resulting cubic scaling GW method has a sufficiently small prefactor to outperform standard quartic scaling methods on small systems ($gtrapprox$ 10 atoms) and also represents a substantial improvement over other cubic methods tested for all system sizes studied. The approach can be applied to any theoretical framework containing large sums of terms with energy differences in the denominator.
We employ a tight-binding parametrization based on the Slater Koster model in order to fit the band structures of single-layer, bilayer and bulk black phosphorus obtained from first-principles calculations. We find that our model, which includes 9 or 17 parameters depending on whether overlap is included or not, reproduces quite well the ab-initio band structures over a wide energy range, especially the occupied bands. We also find that the inclusion of overlap parameters improves the quality of the fit for the conduction bands. On the other hand, hopping and on-site energies are consistent throughout the different systems, which is an indication that our model is suitable for calculations on multilayer black phosphorus and more complex situations in which first-principles calculations become prohibitive, such as disordered systems and heterostructures with a large lattice mismatch. We also discuss the limitations of the model and how the fit procedure can be improved for a more accurate description of bands in the vicinity of the Fermi energy.
We present a tight-binding based GW approach for the calculation of quasiparticle energy levels in confined systems such as molecules. Key quantities in the GW formalism like the microscopic dielectric function or the screened Coulomb interaction are expressed in a minimal basis of spherically averaged atomic orbitals. All necessary integrals are either precalculated or approximated without resorting to empirical data. The method is validated against first principles results for benzene and anthracene, where good agreement is found for levels close to the frontier orbitals. Further, the size dependence of the quasiparticle gap is studied for conformers of the polyacenes ($C_{4n+2}H_{2n+4}$) up to n = 30.
Using large-scale DFT calculations, we have investigated the structural and electronic properties of both armchair and zigzag graphdiyne nanotubes as a function of size. To provide insight in these properties, we present new detailed calculations of the structural relaxation energy, effective electron/hole mass, and size-scaling of the bandgap as a function of size and chirality using accurate screened-exchange DFT calculations. These calculations provide a systematic evaluation of the structural and electronic properties of the largest graphdiyne nanotubes to date - up to 1,296 atoms and 23,328 basis functions. Our calculations find that zigzag graphdiyne nanotubes (GDNTs) are structurally more stable compared to armchair GDNTs of the same size. Furthermore, these large-scale calculations allow us to present simple analytical formulae to guide future experimental efforts for estimating the fundamental bandgaps of these unique nanotubes as a function of chirality and diameter. While the bandgaps for both the armchair and zigzag GDNTs can be tuned as a function of size, the conductivity in each of these two different chiralities is markedly different. Zigzag GDNTs have wider valence and conduction bands and are expected to have a higher electron- and hole-mobility than their armchair counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا