ﻻ يوجد ملخص باللغة العربية
Galaxy clusters are unique laboratories to investigate turbulent fluid motions and large scale magnetic fields. Synchrotron radio halos at the center of merging galaxy clusters provide the most spectacular and direct evidence of the presence of relativistic particles and magnetic fields associated with the intracluster medium. The study of polarized emission from radio halos is extremely important to constrain the properties of intracluster magnetic fields and the physics of the acceleration and transport of the relativistic particles. However, detecting this polarized signal is a very hard task with the current radio facilities.We use cosmological magneto-hydrodynamical simulations to predict the expected polarized surface brightness of radio halos at 1.4 GHz. We compare these expectations with the sensitivity and the resolution reachable with the SKA1. This allows us to evaluate the potential for studying intracluster magnetic fields in the surveys planned for SKA1.
The overwhelming foreground contamination is one of the primary impediments to probing the Epoch of Reionization (EoR) through measuring the redshifted 21 cm signal. Among various foreground components, radio halos are less studied and their impacts
We have combined determinations of the epoch-dependent star formation rate (SFR) function with relationships between SFR and radio (synchrotron and free-free) emission to work out detailed predictions for the counts and the redshift distributions of
Magnetic fields are an important ingredient of the interstellar medium (ISM). Besides their importance for star formation, they govern the transport of cosmic rays, relevant to the launch and regulation of galactic outflows and winds, which in turn a
Radio-loud AGN (>10^{22} W/Hz at 1.4 GHz) will be the dominant bright source population detected with the SKA. The high resolution that the SKA will provide even in wide-area surveys will mean that, for the first time sensitive, multi-frequency total
Synchrotron radio halos at the center of merging galaxy clusters provide the most spectacular and direct evidence of the presence of relativistic particles and magnetic fields associated with the intracluster medium. The study of polarized emission f