ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength observations of the black hole transient Swift J1745-26 during the outburst decay

134   0   0.0 ( 0 )
 نشر من قبل Emrah Kalemci
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterized the broad-band X-ray spectra of Swift J1745-26 during the decay of the 2013 outburst using INTEGRAL ISGRI, JEM-X and Swift XRT. The X-ray evolution is compared to the evolution in optical and radio. We fit the X- ray spectra with phenomenological and Comptonization models. We discuss possible scenarios for the physical origin of a ~50 day flare observed both in optical and X- rays ~170 days after the peak of the outburst. We conclude that it is a result of enhanced mass accretion in response to an earlier heating event. We characterized the evolution in the hard X-ray band and showed that for the joint ISGRI-XRT fits, the e-folding energy decreased from 350 keV to 130 keV, while the energy where the exponential cut-off starts increased from 75 keV to 112 keV as the decay progressed.We investigated the claim that high energy cut-offs disappear with the compact jet turning on during outburst decays, and showed that spectra taken with HEXTE on RXTE provide insufficient quality to characterize cut-offs during the decay for typical hard X-ray fluxes. Long INTEGRAL monitoring observations are required to understand the relation between the compact jet formation and hard X-ray behavior. We found that for the entire decay (including the flare), the X-ray spectra are consistent with thermal Comptonization, but a jet synchrotron origin cannot be ruled out.



قيم البحث

اقرأ أيضاً

Galactic black hole transients show many interesting phenomena during outburst decays. We present simultaneous X-ray (RXTE, Swift, and INTEGRAL), and optical/near-infrared (O/NIR) observations (SMARTS) of the X-ray transient XTE J1752-223 during its outburst decay in 2010. The multiwavelength observations over 150 days in 2010 cover the transition from soft to hard spectral state. We discuss the evolution of radio emission is with respect to the O/NIR light curve which shows several flares. One of those flares is bright and long, starting about 60 days after the transition in X-ray timing properties. During this flare, the radio spectral index becomes harder. Other smaller flares occur along with the X-ray timing transition, and also right after the detection of the radio core. We discuss the significances of these flares. Furthermore, using the simultaneous broadband X-ray spectra including INTEGRAL, we find that a high energy cut-off with a folding energy near 250 keV is necessary around the time that the compact jet is forming. The broad band spectrum can be fitted equally well with a Comptonization model. In addition, using photoelectric absorption edges in the XMM-Newton RGS X-ray spectra and the extinction of red clump giants in the direction of the source, we find a lower limit on the distance of > 5 kpc.
154 - P.A. Curran 2013
Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in September 2012. This source is thought to be one of a growing number of sources that display failed outbursts, in which the self-absorbed ra dio jets of the transient source are never fully quenched and the thermal emission from the geometrically-thin inner accretion disk never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large scale variability compared to the X-ray emission and deviations from the standard radio--X-ray correlation that are indicative of an unstable jet and confirm the outbursts transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (~50%) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically-thin ejecta -- the first time such a discrete ejection has been observed in a failed outburst -- and may imply a complex magnetic field geometry.
We study the X-ray transient Swift J1745-26, using observations obtained from its outburst in September 2012, up to its decay towards quiescence in March 2013. We obtained optical and infrared observations, through override programme at ESO/VLT with FORS2 and ISAAC instruments, and archival optical (VLT/VIRCAM), radio and X-ray (Swift) observations, to build the lightcurve and the broad-band Spectral Energy Distribution (SED) of Swift J1745-26. We show that, during its outburst and also during its decay towards quiescence, Swift J1745-26 SED can be adjusted, from infrared up to X-rays, by the sum of both a viscous irradiated multi-colour blackbody emitted by an accretion disk, and a synchrotron powerlaw at high energy. In the radio domain, the SED arises from synchrotron emission from the jet. While our SED fitting confirms that the source remained in the low/hard state during its outburst, we determine an X-ray spectral break at frequency 3.1 < nu_break < 3.4 x 10^14 Hz, and a radio spectral break at 10^12 Hz < nu_break < 10^13 Hz. We also show that the system is compatible with an absorption Av of ~7.69 magnitudes, lies within a distance interval of D~[2.6-4.8] kpc, with an upper limit of orbital period P_orb = 11.3 hours, and that the companion star is a late-type star of spectral type in the range K0 - M0 V, confirming that the system is a low-mass X-ray binary. We finally plot the position of Swift J1745-26 on an optical-infrared - X-ray luminosity diagram: its localization on this diagram is consistent with the source staying in the low-hard state during outburst and decay phases.
217 - P.A. Curran 2011
Here we summarise the Swift broadband observations of the recently discovered X-ray transient and black hole candidate, XTE J1752-223,obtained over the period of outburst from October 2009 to June 2010. We offer a phenomenological treatment of the sp ectra as an indication of the canonical spectral state of the source during different periods of the outburst. We find that the high energy hardness-intensity diagrams over two separate bands follows the canonical behavior, confirming the spectral states. From Swift-UVOT data we confirm the presence of an optical counterpart which displays variability correlated, in the soft state, to the X-ray emission observed by Swift-XRT. The optical counterpart also displays hysteretical behaviour between the states not normally observed in the optical bands, suggesting a possible contribution from a synchrotron emitting jet to the optical emission in the rising hard state. Our XRT timing analysis shows that in the hard state there is significant variability below 10Hz which is more pronounced at low energies, while during the soft state the level of variability is consistent with being minimal.These properties of XTE J1752-223 support its candidacy as a black hole in the Galactic centre region.
191 - P.A. Curran 2010
We present Swift broadband observations of the recently discovered black hole candidate, X-ray transient, XTE J1752-223, obtained over the period of outburst from October 2009 to June 2010. From Swift-UVOT data we confirm the presence of an optical c ounterpart which displays variability correlated, in the soft state, to the X-ray emission observed by Swift-XRT. The optical counterpart also displays hysteretical behaviour between the states not normally observed in the optical bands, suggesting a possible contribution from a synchrotron emitting jet to the optical emission in the rising hard state. We offer a purely phenomenological treatment of the spectra as an indication of the canonical spectral state of the source during different periods of the outburst. We find that the high energy hardness-intensity diagrams over two separate bands follows the canonical behavior, confirming the spectral states. Our XRT timing analysis shows that in the hard state there is significant variability below 10Hz which is more pronounced at low energies, while during the soft state the level of variability is consistent with being minimal. These properties of XTE J1752-223 support its candidacy as a black hole in the Galactic centre region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا