ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolving polarised jet of black hole candidate Swift J1745-26

183   0   0.0 ( 0 )
 نشر من قبل Peter Curran
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.A. Curran




اسأل ChatGPT حول البحث

Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in September 2012. This source is thought to be one of a growing number of sources that display failed outbursts, in which the self-absorbed radio jets of the transient source are never fully quenched and the thermal emission from the geometrically-thin inner accretion disk never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large scale variability compared to the X-ray emission and deviations from the standard radio--X-ray correlation that are indicative of an unstable jet and confirm the outbursts transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (~50%) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically-thin ejecta -- the first time such a discrete ejection has been observed in a failed outburst -- and may imply a complex magnetic field geometry.



قيم البحث

اقرأ أيضاً

We characterized the broad-band X-ray spectra of Swift J1745-26 during the decay of the 2013 outburst using INTEGRAL ISGRI, JEM-X and Swift XRT. The X-ray evolution is compared to the evolution in optical and radio. We fit the X- ray spectra with phe nomenological and Comptonization models. We discuss possible scenarios for the physical origin of a ~50 day flare observed both in optical and X- rays ~170 days after the peak of the outburst. We conclude that it is a result of enhanced mass accretion in response to an earlier heating event. We characterized the evolution in the hard X-ray band and showed that for the joint ISGRI-XRT fits, the e-folding energy decreased from 350 keV to 130 keV, while the energy where the exponential cut-off starts increased from 75 keV to 112 keV as the decay progressed.We investigated the claim that high energy cut-offs disappear with the compact jet turning on during outburst decays, and showed that spectra taken with HEXTE on RXTE provide insufficient quality to characterize cut-offs during the decay for typical hard X-ray fluxes. Long INTEGRAL monitoring observations are required to understand the relation between the compact jet formation and hard X-ray behavior. We found that for the entire decay (including the flare), the X-ray spectra are consistent with thermal Comptonization, but a jet synchrotron origin cannot be ruled out.
291 - A.J. Tetarenko 2015
We present the results of our observations of the early stages of the 2012--2013 outburst of the transient black hole X-ray binary (BHXRB), Swift J1745$-$26, with the VLA, SMA, and JCMT (SCUBA--2). Our data mark the first multiple-band mm & sub-mm ob servations of a BHXRB. During our observations the system was in the hard accretion state producing a steady, compact jet. The unique combination of radio and mm/sub-mm data allows us to directly measure the spectral indices in and between the radio and mm/sub-mm regimes, including the first mm/sub-mm spectral index measured for a BHXRB. Spectral fitting revealed that both the mm (230 GHz) and sub-mm (350 GHz) measurements are consistent with extrapolations of an inverted power-law from contemporaneous radio data (1--30 GHz). This indicates that, as standard jet models predict, a power-law extending up to mm/sub-mm frequencies can adequately describe the spectrum, and suggests that the mechanism driving spectral inversion could be responsible for the high mm/sub-mm fluxes (compared to radio fluxes) observed in outbursting BHXRBs. While this power-law is also consistent with contemporaneous optical data, the optical data could arise from either jet emission with a jet spectral break frequency of $ u_{{rm break}}gtrsim1times10^{14},{rm Hz}$ or the combination of jet emission with a lower jet spectral break frequency of $ u_{{rm break}}gtrsim2times10^{11},{rm Hz}$ and accretion disc emission. Our analysis solidifies the importance of the mm/sub-mm regime in bridging the crucial gap between radio and IR frequencies in the jet spectrum, and justifies the need to explore this regime further.
In studies of accreting black holes in binary systems, empirical relations have been proposed to quantify the coupling between accretion processes and ejection mechanisms. These processes are probed respectively by means of X-ray and radio/optical-in frared observations. The relations predict, given certain accretion conditions, the expected energy output in the form of a jet. We investigated this coupling by studying the black hole candidate Swift J1753.5-0127, via multiwavelength coordinated observations over a period of ~4 years. We present the results of our campaign showing that, all along the outburst, the source features a jet that is fainter than expected from the empirical correlation between the radio and the X-ray luminosities in hard spectral state. Because the jet is so weak in this system the near-infrared emission is, unusually for this state and luminosity, dominated by thermal emission from the accretion disc. We briefly discuss the importance and the implications of a precise determination of both the slope and the normalisation of the correlations, listing some possible parameters that broadband jet models should take into account to explain the population of sources characterized by a dim jet. We also investigate whether our data can give any hint about the nature of the compact object in the system, since its mass has not been dynamically measured.
We report on radio and X-ray monitoring observations of the BHC Swift J1753.5-0127 taken over a ~10 year period. Presented are daily radio observations at 15 GHz with the AMI-LA and X-ray data from Swift XRT and BAT. Also presented is a deep 2hr JVLA observation taken in an unusually low-luminosity soft-state (with a low disk temperature). We show that although the source has remained relatively radio-quiet compared to XRBs with a similar X-ray luminosity in the hard-state, the power-law relationship scales as $zeta=0.96pm0.06$ i.e. slightly closer to what has been considered for radiatively inefficient accretion disks. We also place the most stringent limit to date on the radio-jet quenching in an XRB soft-state, showing the connection of the jet quenching to the X-ray power-law component; the radio flux in the soft-state was found to be $<21~mu$Jy, which is a quenching factor of $gtrsim25$
We present a spectral analysis of the black hole candidate and X-ray transient source Swift J1753.5 0127 making use of simultaneous observations of XMM-Newton and Rossi X-ray Timing Explorer (RXTE) in 2006, when the source was in outburst. The aim of this paper is to test whether a thermal component due to the accretion disc is present in the X-ray spectrum. We fit the data with a range of spectral models, and we find that for all of these models the fits to the X-ray energy spectra significantly require the addition of the disc black-body component. We also find a broad iron emission line at around 6.5 keV, most likely due to iron in the accretion disc. Our results confirm the existence of a cool inner disc extending near or close to the innermost circular orbit (ISCO).We further discovered broad emission lines of NVII and OVIII at ~ 0.52 keV and 0.65 keV, respectively in the RGS spectrum of Swift J1753.5-0127.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا