ﻻ يوجد ملخص باللغة العربية
We present the concept of an acoustic rake receiver---a microphone beamformer that uses echoes to improve the noise and interference suppression. The rake idea is well-known in wireless communications; it involves constructively combining different multipath components that arrive at the receiver antennas. Unlike spread-spectrum signals used in wireless communications, speech signals are not orthogonal to their shifts. Therefore, we focus on the spatial structure, rather than temporal. Instead of explicitly estimating the channel, we create correspondences between early echoes in time and image sources in space. These multiple sources of the desired and the interfering signal offer additional spatial diversity that we can exploit in the beamformer design. We present several intuitive and optimal formulations of acoustic rake receivers, and show theoretically and numerically that the rake formulation of the maximum signal-to-interference-and-noise beamformer offers significant performance boosts in terms of noise and interference suppression. Beyond signal-to-noise ratio, we observe gains in terms of the emph{perceptual evaluation of speech quality} (PESQ) metric for the speech quality. We accompany the paper by the complete simulation and processing chain written in Python. The code and the sound samples are available online at url{http://lcav.github.io/AcousticRakeReceiver/}.
While recent progresses in neural network approaches to single-channel speech separation, or more generally the cocktail party problem, achieved significant improvement, their performance for complex mixtures is still not satisfactory. In this work,
We consider the problem of decorrelating states of coupled quantum systems. The decorrelation can be seen as separation of quantum signals, in analogy to the classical problem of signal-separation rising in the so-called cocktail-party context. The s
We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association
Zero-knowledge succinct non-interactive argument of knowledge (zkSNARK) allows a party, known as the prover, to convince another party, known as the verifier, that he knows a private value $v$, without revealing it, such that $F(u,v)=y$ for some func
Elaborate protocols in Secure Multi-party Computation enable several participants to compute a public function of their own private inputs while ensuring that no undesired information leaks about the private inputs, and without resorting to any trust