ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Information-Flow Analysis of Secure Three-Party Affine Computations

209   0   0.0 ( 0 )
 نشر من قبل Patrick Ah-Fat
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Elaborate protocols in Secure Multi-party Computation enable several participants to compute a public function of their own private inputs while ensuring that no undesired information leaks about the private inputs, and without resorting to any trusted third party. However, the public output of the computation inevitably leaks some information about the private inputs. Recent works have introduced a framework and proposed some techniques for quantifying such information flow. Yet, owing to their complexity, those methods do not scale to practical situations that may involve large input spaces. The main contribution of the work reported here is to formally investigate the information flow captured by the min-entropy in the particular case of secure three-party computations of affine functions in order to make its quantification scalable to realistic scenarios. To this end, we mathematically derive an explicit formula for this entropy under uniform prior beliefs about the inputs. We show that this closed-form expression can be computed in time constant in the inputs sizes and logarithmic in the coefficients of the affine function. Finally, we formulate some theoretical bounds for this privacy leak in the presence of non-uniform prior beliefs.



قيم البحث

اقرأ أيضاً

The purpose of Secure Multi-Party Computation is to enable protocol participants to compute a public function of their private inputs while keeping their inputs secret, without resorting to any trusted third party. However, opening the public output of such computations inevitably reveals some information about the private inputs. We propose a measure generalising both Renyi entropy and g-entropy so as to quantify this information leakage. In order to control and restrain such information flows, we introduce the notion of function substitution which replaces the computation of a function that reveals sensitive information with that of an approximate function. We exhibit theoretical bounds for the privacy gains that this approach provides and experimentally show that this enhances the confidentiality of the inputs while controlling the distortion of computed output values. Finally, we investigate the inherent compromise between accuracy of computation and privacy of inputs and we demonstrate how to realise such optimal trade-offs.
101 - Yong Huang , Wei Wang , Biao He 2018
Information leakage rate is an intuitive metric that reflects the level of security in a wireless communication system, however, there are few studies taking it into consideration. Existing work on information leakage rate has two major limitations d ue to the complicated expression for the leakage rate: 1) the analytical and numerical results give few insights into the trade-off between system throughput and information leakage rate; 2) and the corresponding optimal designs of transmission rates are not analytically tractable. To overcome such limitations and obtain an in-depth understanding of information leakage rate in secure wireless communications, we propose an approximation for the average information leakage rate in the fixed-rate transmission scheme. Different from the complicated expression for information leakage rate in the literature, our proposed approximation has a low-complexity expression, and hence, it is easy for further analysis. Based on our approximation, the corresponding approximate optimal transmission rates are obtained for two transmission schemes with different design objectives. Through analytical and numerical results, we find that for the system maximizing throughput subject to information leakage rate constraint, the throughput is an upward convex non-decreasing function of the security constraint and much too loose security constraint does not contribute to higher throughput; while for the system minimizing information leakage rate subject to throughput constraint, the average information leakage rate is a lower convex increasing function of the throughput constraint.
Secure multiparty computations enable the distribution of so-called shares of sensitive data to multiple parties such that the multiple parties can effectively process the data while being unable to glean much information about the data (at least not without collusion among all parties to put back together all the shares). Thus, the parties may conspire to send all their processed results to a trusted third party (perhaps the data provider) at the conclusion of the computations, with only the trusted third party being able to view the final results. Secure multiparty computations for privacy-preserving machine-learning turn out to be possible using solely standard floating-point arithmetic, at least with a carefully controlled leakage of information less than the loss of accuracy due to roundoff, all backed by rigorous mathematical proofs of worst-case bounds on information loss and numerical stability in finite-precision arithmetic. Numerical examples illustrate the high performance attained on commodity off-the-shelf hardware for generalized linear models, including ordinary linear least-squares regression, binary and multinomial logistic regression, probit regression, and Poisson regression.
The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computatio n for their benefit. Boolean functions are the key components of many applications, e.g., verification functions in blockchain systems and design of cryptographic algorithms. We consider the problem of computing a Boolean function in a distributed computing system with particular focus on emph{security against Byzantine workers}. Any Boolean function can be modeled as a multivariate polynomial with high degree in general. However, the security threshold (i.e., the maximum number of adversarial workers can be tolerated such that the correct results can be obtained) provided by the recent proposed Lagrange Coded Computing (LCC) can be extremely low if the degree of the polynomial is high. We propose three different schemes called emph{coded Algebraic normal form (ANF)}, emph{coded Disjunctive normal form (DNF)} and emph{coded polynomial threshold function (PTF)}. The key idea of the proposed schemes is to model it as the concatenation of some low-degree polynomials and threshold functions. In terms of the security threshold, we show that the proposed coded ANF and coded DNF are optimal by providing a matching outer bound.
A digital goods auction is a type of auction where potential buyers bid the maximal price that they are willing to pay for a certain item, which a seller can produce at a negligible cost and in unlimited quantity. To maximise her benefits, the aim fo r the seller is to find the optimal sales price, which every buyer whose bid is not lower will pay. For fairness and privacy purposes, buyers may be concerned about protecting the confidentiality of their bids. Secure Multi-Party Computation is a domain of Cryptography that would allow the seller to compute the optimal sales price while guaranteeing that the bids remain secret. Paradoxically, as a function of the buyers bids, the sales price inevitably reveals some private information. Generic frameworks and entropy-based techniques based on Quantitative Information Flow have been developed in order to quantify and restrict those leakages. Due to their combinatorial nature, these techniques do not scale to large input spaces. In this work, we aim at scaling those privacy analyses to large input spaces in the particular case of digital goods auctions. We derive closed-form formulas for the posterior min-entropy of private inputs in two and three-party auctions, which enables us to effectively quantify the information leaks for arbitrarily large input spaces. We also provide supportive experimental evidence that enables us to formulate a conjecture that would allow us to extend our results to any number of parties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا