ﻻ يوجد ملخص باللغة العربية
History-dependent processes are ubiquitous in natural and social systems. Many such stochastic processes, especially those that are associated with complex systems, become more constrained as they unfold, meaning that their sample-space, or their set of possible outcomes, reduces as they age. We demonstrate that these sample-space reducing (SSR) processes necessarily lead to Zipfs law in the rank distributions of their outcomes. We show that by adding noise to SSR processes the corresponding rank distributions remain exact power-laws, $p(x)sim x^{-lambda}$, where the exponent directly corresponds to the mixing ratio of the SSR process and noise. This allows us to give a precise meaning to the scaling exponent in terms of the degree to how much a given process reduces its sample-space as it unfolds. Noisy SSR processes further allow us to explain a wide range of scaling exponents in frequency distributions ranging from $alpha = 2$ to $infty$. We discuss several applications showing how SSR processes can be used to understand Zipfs law in word frequencies, and how they are related to diffusion processes in directed networks, or ageing processes such as in fragmentation processes. SSR processes provide a new alternative to understand the origin of scaling in complex systems without the recourse to multiplicative, preferential, or self-organised critical processes.
The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the history of word-usage earlier in that sentence. We study a simple history-dependent model
It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such Sample Space Reducing processes (SSRP) offer
Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved loc
In some systems, the connecting probability (and thus the percolation process) between two sites depends on the geometric distance between them. To understand such process, we propose gravitationally correlated percolation models for link-adding netw
Network growth processes can be understood as generative models of the structure and history of complex networks. This point of view naturally leads to the problem of network archaeology: reconstructing all the past states of a network from its struc