ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transition in the recoverability of network history

105   0   0.0 ( 0 )
 نشر من قبل Jean-Gabriel Young
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Network growth processes can be understood as generative models of the structure and history of complex networks. This point of view naturally leads to the problem of network archaeology: reconstructing all the past states of a network from its structure---a difficult permutation inference problem. In this paper, we introduce a Bayesian formulation of network archaeology, with a generalization of preferential attachment as our generative mechanism. We develop a sequential Monte Carlo algorithm to evaluate the posterior averages of this model, as well as an efficient heuristic that uncovers a history well correlated with the true one, in polynomial time. We use these methods to identify and characterize a phase transition in the quality of the reconstructed history, when they are applied to artificial networks generated by the model itself. Despite the existence of a no-recovery phase, we find that nontrivial inference is possible in a large portion of the parameter space as well as on empirical data.



قيم البحث

اقرأ أيضاً

In this paper, we propose a Boltzmann-type kinetic description of opinion formation on social networks, which takes into account a general connectivity distribution of the individuals. We consider opinion exchange processes inspired by the Sznajd mod el and related simplifications but we do not assume that individuals interact on a regular lattice. Instead, we describe the structure of the social network statistically, assuming that the number of contacts of a given individual determines the probability that their opinion reaches and influences the opinion of another individual. From the kinetic description of the system, we study the evolution of the mean opinion, whence we find precise analytical conditions under which phase transitions, i.e. changes of sign between the initial and the asymptotic mean opinions, occur. Furthermore, we show that a non-zero correlation between the initial opinions and the connectivity of the individuals is necessary to observe phase transitions. Finally, we validate our analytical results through Monte Carlo simulations of the stochastic opinion exchange processes on the social network.
Universal spectral properties of multiplex networks allow us to assess the nature of the transition between disease-free and endemic phases in the SIS epidemic spreading model. In a multiplex network, depending on a coupling parameter, $p$, the inver se participation ratio ($IPR$) of the leading eigenvector of the adjacency matrix can be in two different structural regimes: (i) layer-localized and (ii) delocalized. Here we formalize the structural transition point, $p^*$, between these two regimes, showing that there are universal properties regarding both the layer size $n$ and the layer configurations. Namely, we show that $IPR sim n^{-delta}$, with $deltaapprox 1$, and revealed an approximately linear relationship between $p^*$ and the difference between the layers average degrees. Furthermore, we showed that this multiplex structural transition is intrinsically connected with the nature of the SIS phase transition, allowing us to both understand and quantify the phenomenon. As these results are related to the universal properties of the leading eigenvector, we expect that our findings might be relevant to other dynamical processes in complex networks.
We generalize the original majority-vote model by incorporating an inertia into the microscopic dynamics of the spin flipping, where the spin-flip probability of any individual depends not only on the states of its neighbors, but also on its own stat e. Surprisingly, the order-disorder phase transition is changed from a usual continuous type to a discontinuous or an explosive one when the inertia is above an appropriate level. A central feature of such an explosive transition is a strong hysteresis behavior as noise intensity goes forward and backward. Within the hysteresis region, a disordered phase and two symmetric ordered phases are coexisting and transition rates between these phases are numerically calculated by a rare-event sampling method. A mean-field theory is developed to analytically reveal the property of this phase transition.
This paper describes an agent-based model of a finite group of agents in a single population who each choose which convention to advocate, and which convention to practice. Influences or dependencies in agents choice exists in the form of guru effect s and what others practice. With payoffs being dependent on cumulative rewards or actual standings in society, we illustrate the evolutionary dynamics of the phase structure of each group in the population via simulations.
A number of recent works have concentrated on a few statistical properties of complex networks, such as the clustering, the right-skewed degree distribution and the community, which are common to many real world networks. In this paper, we address th e hierarchy property sharing among a large amount of networks. Based upon the eigenvector centrality (EC) measure, a method is proposed to reconstruct the hierarchical structure of a complex network. It is tested on the Santa Fe Institute collaboration network, whose structure is well known. We also apply it to a Mathematicians collaboration network and the protein interaction network of Yeast. The method can detect significantly hierarchical structures in these networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا