ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Control of Valley Pseudospin in Monolayer WSe2

218   0   0.0 ( 0 )
 نشر من قبل Grant Aivazian
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic moment which underlies the valley-dependent circular dichroism that allows optical generation of valley polarization, intervalley quantum coherence, and the valley Hall effect. However, magnetic manipulation of valley pseudospin via this magnetic moment, analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magnetic tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons which is explained by renormalization of the excitonic spectrum due to strong exchange interactions.



قيم البحث

اقرأ أيضاً

Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition metal dichalcogenide (TMDC) with broken inversion symmetry possesses two degenerate yet inequivalent valleys, offering unique opportunities for valley control through helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest, (~ 0.2 meV/T). Here we show greatly enhanced valley spitting in monolayer WSe2, utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magneto-reflectance measurements. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing MEF of a magnetic insulator can induce magnetic order, and valley and spin polarization in TMDCs, which may enable valleytronic and quantum computing applications.
Monolayer transition metal dichalcogenide (TMDC) crystals, as direct-gap materials with unusually strong light-matter interaction, have attracted much recent attention. In contrast to the initial understanding, the minima of the conduction band are p redicted to be spin split. Because of this splitting and the spin-polarized character of the valence bands, the lowest-lying excitonic states in WX2 (X=S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark band-edge excitons, which strongly influence the light emission properties of the material. Here we show how an in-plane magnetic field can brighten the dark excitonic states and allow their properties to be revealed experimentally in monolayer WSe2. In particular, precise energy levels for both the neutral and charged dark excitons were obtained and compared with ab-initio calculations using the GW-BSE approach. Greatly increased emission and valley lifetimes were observed for the brightened dark states as a result of their spin configuration. These studies directly probe the excitonic spin manifold and provide a new route to tune the optical and valley properties of these prototypical two-dimensional semiconductors.
Due to degeneracies arising from crystal symmetries, it is possible for electron states at band edges (valleys) to have additional spin-like quantum numbers. An important question is whether coherent manipulation can be performed on such valley pseud ospins, analogous to that routinely implemented using true spin, in the quest for quantum technologies. Here we show for the first time that SU(2) valley coherence can indeed be generated and detected. Using monolayer semiconductor WSe2 devices, we first establish the circularly polarized optical selection rules for addressing individual valley excitons and trions. We then reveal coherence between valley excitons through the observation of linearly polarized luminescence, whose orientation always coincides with that of any linearly polarized excitation. Since excitons in a single valley emit circularly polarized photons, linear polarization can only be generated through recombination of an exciton in a coherent superposition of the two valleys. In contrast, the corresponding photoluminescence from trions is not linearly polarized, consistent with the expectation that the emitted photon polarization is entangled with valley pseudospin. The ability to address coherence, in addition to valley polarization, adds a critical dimension to the quantum manipulation of valley index necessary for coherent valleytronics.
69 - M. Krol , K. Lekenta , R. Mirek 2018
Monolayer transition metal dichalcogenides, known for exhibiting strong excitonic resonances, constitute a very interesting and versatile platform for investigation of light-matter interactions. In this work we report on a strong coupling regime betw een excitons in monolayer WSe2 and photons confined in an open, voltage-tunable dielectric microcavity. The tunability of our system allows us to extend the exciton-polariton state over a wide energy range and, in particular, to bring the excitonic component of the lower polariton mode into resonance with other excitonic transitions in monolayer WSe2. With selective excitation of spin-polarized exciton-polaritons we demonstrate the valley polarization when the polaritons from the lower branch come into resonance with a bright trion state in monolayer WSe2 and valley depolarization when they are in resonance with a dark trion state.
140 - G. Wang , L. Bouet , D. Lagarde 2014
Optical interband transitions in monolayer transition metal dichalcogenides such as WSe2 and MoS2 are governed by chiral selection rules. This allows efficient optical initialization of an electron in a specific K-valley in momentum space. Here we pr obe the valley dynamics in monolayer WSe2 by monitoring the emission and polarization dynamics of the well separated neutral excitons (bound electron hole pairs) and charged excitons (trions) in photoluminescence. The neutral exciton photoluminescence intensity decay time is about 4ps, whereas the trion emission occurs over several tens of ps. The trion polarization dynamics shows a partial, fast initial decay within tens of ps before reaching a stable polarization of about 20%, for which a typical valley polarization decay time larger than 1ns can be inferred. This is a clear signature of stable, optically initialized valley polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا