ﻻ يوجد ملخص باللغة العربية
Monolayer transition metal dichalcogenide (TMDC) crystals, as direct-gap materials with unusually strong light-matter interaction, have attracted much recent attention. In contrast to the initial understanding, the minima of the conduction band are predicted to be spin split. Because of this splitting and the spin-polarized character of the valence bands, the lowest-lying excitonic states in WX2 (X=S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark band-edge excitons, which strongly influence the light emission properties of the material. Here we show how an in-plane magnetic field can brighten the dark excitonic states and allow their properties to be revealed experimentally in monolayer WSe2. In particular, precise energy levels for both the neutral and charged dark excitons were obtained and compared with ab-initio calculations using the GW-BSE approach. Greatly increased emission and valley lifetimes were observed for the brightened dark states as a result of their spin configuration. These studies directly probe the excitonic spin manifold and provide a new route to tune the optical and valley properties of these prototypical two-dimensional semiconductors.
Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic momen
We observe a set of three replica luminescent peaks at ~21.4 meV below the dark exciton, negative and positive dark trions (or exciton-polarons) in monolayer WSe2. The replica redshift energy matches the energy of the zone-center E-mode optical phono
We experimentally demonstrate dressing of the excited exciton states by a continuously tunable Fermi sea of free charge carriers in a monolayer semiconductor. It represents an unusual scenario of two-particle excitations of charged excitons previousl
Two-dimensional (2D) materials, such as graphene1, boron nitride2, and transition metal dichalcogenides (TMDs)3-5, have sparked wide interest in both device physics and technological applications at the atomic monolayer limit. These 2D monolayers can
Monolayers of semiconducting transition metal dichalcogenides (TMDCs) with unique spin-valley contrasting properties and remarkably strong excitonic effects continue to be a subject of intense research interests. These model 2D semiconductors feature