ﻻ يوجد ملخص باللغة العربية
Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite element model. The measured average kinetic energy is in agreement with the expected value of 1/2 kT.
We construct a class of backgrounds with a warp factor and anti-de Sitter asymptotics, which are dual to boundary systems that have a ground state with a short-range two-point correlation function. The solutions of probe scalar fields on these backgr
In this work we study the noise induced effects on the dynamics of short polymers crossing a potential barrier, in the presence of a metastable state. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecul
A study of the possible interactions between fermions assuming only rotational invariance has revealed 15 forms for the potential involving the fermion spins. We review the experimental constraints on unobserved macroscopic, spin-dependent interactio
The MICROSCOPE experiment was designed to test the weak equivalence principle in space, by comparing the low-frequency dynamics of cylindrical free-falling test masses controlled by electrostatic forces. We use data taken during technical sessions ai
We study the spectral properties of the thermal force giving rise to the Brownian motion of a continuous mechanical system -- namely, a nanomechanical beam resonator -- in a viscous liquid. To this end, we perform two separate sets of experiments. Fi