ﻻ يوجد ملخص باللغة العربية
An experiment to search for double beta processes in 106Cd by using cadmium tungstate crystal scintillator enriched in 106Cd (106CdWO4) in coincidence with the four crystals HPGe detector GeMulti is in progress at the STELLA facility of the Gran Sasso underground laboratory of INFN (Italy). The 106CdWO4 scintillator is viewed by a low-background photomultiplier tube through a lead tungstate crystal light-guide produced from deeply purified archaeological lead to suppress gamma quanta from the photomultiplier tube. Here we report the first results of the experiment after 3233 hours of the data taking. A few new improved limits on double beta processes in 106Cd are obtained, in particular T1/2(2nuECb+) > 8.4e20 yr at 90% C.L.
A search for the double beta processes in 106Cd was carried out at the Gran Sasso National Laboratories of the INFN (Italy) with the help of a 106CdWO4 crystal scintillator (215 g) enriched in 106Cd up to 66%. After 6590 h of data taking, new improve
A radiopure cadmium tungstate crystal scintillator, enriched in $^{106}$Cd to 66%, with mass of 216 g ($^{106}$CdWO$_4$), was used to search for double beta decay processes in $^{106}$Cd in coincidence with four ultra-low background high purity germa
Search for double $beta$ decay of $^{136}$Ce and $^{138}$Ce was realized with 732 g of deeply purified cerium oxide sample measured over 1900 h with the help of an ultra-low background HPGe $gamma$ detector with a volume of 465 cm$^3$ at the STELLA f
Studies on double beta decay processes in $^{106}$Cd were performed by using a cadmium tungstate scintillator enriched in $^{106}$Cd at 66% ($^{106}$CdWO$_4$) with two CdWO$_4$ scintillation counters (with natural Cd composition). No effect was obser
The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr