ﻻ يوجد ملخص باللغة العربية
A search for the double beta processes in 106Cd was carried out at the Gran Sasso National Laboratories of the INFN (Italy) with the help of a 106CdWO4 crystal scintillator (215 g) enriched in 106Cd up to 66%. After 6590 h of data taking, new improved half-life limits on the double beta processes in 106Cd were established at the level of 10^{19}-10^{21} yr; in particular, T_{1/2}(2 u epsilon beta^+) > 2.1 10^{20} yr, T_{1/2}(2 u 2beta^+) > 4.3 10^{20} yr, and T_{1/2}(0 u 2epsilon) > 1.0 10^{21} yr. The resonant neutrinoless double electron captures to the 2718 keV, 2741 keV and 2748 keV excited states of 106Pd are restricted to T_{1/2}(0 u 2K) > 4.3 10^{20} yr, T_{1/2}(0 u KL1) > 9.5 10^{20} yr and T_{1/2}(0 u KL3) > 4.3 10^{20} yr, respectively (all limits at 90% C.L.). A possible resonant enhancement of the 0 u 2epsilon processes is estimated in the framework of the QRPA approach. The radioactive contamination of the 106CdWO4 crystal scintillator is reported.
An experiment to search for double beta processes in 106Cd by using cadmium tungstate crystal scintillator enriched in 106Cd (106CdWO4) in coincidence with the four crystals HPGe detector GeMulti is in progress at the STELLA facility of the Gran Sass
Double beta processes in 64-Zn, 70-Zn, 180-W, and 186-W have been searched for with the help of large volume (0.1-0.7 kg) low background ZnWO4 crystal scintillators at the Gran Sasso National Laboratories of the INFN. Total time of measurements excee
Studies on double beta decay processes in $^{106}$Cd were performed by using a cadmium tungstate scintillator enriched in $^{106}$Cd at 66% ($^{106}$CdWO$_4$) with two CdWO$_4$ scintillation counters (with natural Cd composition). No effect was obser
PbWO4 crystal scintillators are discussed as an active shield and light-guides in 116Cd double beta decay experiment with CdWO4 scintillators. Scintillation properties and radioactive contamination of PbWO4 scintillators were investigated. Energy res
In the field of Double Beta Decay (DBD) searches the possibility to have high resolution detectors in which background can be discriminated is very appealing. This very interesting possibility can be largely fulfilled in the case of a scintillating b