ترغب بنشر مسار تعليمي؟ اضغط هنا

Wave packet dynamics in the one-dimensional extended Hubbard model

348   0   0.0 ( 0 )
 نشر من قبل Julian Rincon
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using time-dependent density-matrix renormalization group, we study the time evolution of electronic wave packets in the one-dimensional extended Hubbard model with on-site and nearest neighbor repulsion, U and V, respectively. As expected, the wave packets separate into spin-only and charge-only excitations (spin-charge separation). Charge and spin velocities exhibit non-monotonic dependence on V. For small and intermediate values of V, both velocities increase with V. However, the charge velocity exhibits a stronger dependence than that of the spin, leading to a more pronounced spin-charge separation. Charge fractionalization, on the other hand, is weakly affected by V. The results are explained in terms of Luttinger liquid theory in the weak-coupling limit, and an effective model in the strong-coupling regime.



قيم البحث

اقرأ أيضاً

We investigate the dynamical spin and charge structure factors and the one-particle spectral function of the one-dimensional extended Hubbard model at half band-filling using the dynamical density-matrix renormalization group method. The influence of the model parameters on these frequency- and momentum-resolved dynamical correlation functions is discussed in detail for the Mott-insulating regime. We find quantitative agreement between our numerical results and experiments for the optical conductivity, resonant inelastic X-ray scattering, neutron scattering, and angle-resolved photoemission spectroscopy in the quasi-one-dimensional Mott insulator SrCuO$_2$.
We study the real-time dynamics of a pair hole/doubly-occupied-site, namely a holon and a doublon, in a 1D Hubbard insulator with on-site and nearest-neighbor Coulomb repulsion. Our analysis shows that the pair is long-lived and the expected decay me chanism to underlying spin excitations is actually inefficient. For a nonzero inter-site Coulomb repulsion, we observe that part of the wave-function remains in a bound state. Our study also provides insight on the holon-doublon propagation in real space. Due to the one-dimensional nature of the problem, these particles move in opposite directions even in the absence of an applied electric field. The potential relevance of our results to solar cell applications is discussed.
Based on tensor network simulations, we discuss the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice described by the extended Fermi-Hubbard model. Considering different initial states, namely noninter acting, metallic, insulating spin and charge density waves, we identify several types of sudden interaction quenches which lead to dynamical criticality. In different scenarios, clear connections between DQPTs and particular properties of the mean double occupation or charge imbalance can be established. Dynamical transitions resulting solely from high-frequency time-periodic modulation are also found, which are well described by a Floquet effective Hamiltonian. State-of-the-art cold-atom quantum simulators constitute ideal platforms to implement several reported DQPTs experimentally.
An Anderson impurity in a Hubbard model on chains with finite length is studied using the density-matrix renormalization group (DMRG) technique. In the first place, we analyzed how the reduction of electron density from half-filling to quarter-fillin g affects the Kondo resonance in the limit of Hubbard repulsion U=0. In general, a weak dependence with the electron density was found for the local density of states (LDOS) at the impurity except when the impurity, at half-filling, is close to a mixed valence regime. Next, in the central part of this paper, we studied the effects of finite Hubbard interaction on the chain at quarter-filling. Our main result is that this interaction drives the impurity into a more defined Kondo regime although accompanied in most cases by a reduction of the spectral weight of the impurity LDOS. Again, for the impurity in the mixed valence regime, we observed an interesting nonmonotonic behavior. We also concluded that the conductance, computed for a small finite bias applied to the leads, follows the behavior of the impurity LDOS, as in the case of non-interacting chains. Finally, we analyzed how the Hubbard interaction and the finite chain length affect the spin compensation cloud both at zero and at finite temperature, in this case using quantum Monte Carlo techniques.
241 - M. Menard , C. Bourbonnais 2010
The phase diagram of the one-dimensional extended Hubbard model at half-filling is investigated by a weak coupling renormalization group method applicable beyond the usual continuum limit for the electron spectrum and coupling constants. We analyze t he influence of irrelevant momentum dependent interactions on asymptotic properties of the correlation functions and the nature of dominant phases for the lattice model under study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا