ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of particle pairing in a two-dimensional plasma crystal

149   0   0.0 ( 0 )
 نشر من قبل Sergey Zhdanov K.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled rf discharge in argon at a low pressure of 1 Pa. The particle dynamics were studied by combining the top-view and side-view imaging of the suspension. Cross analysis of the particle trajectories allowed us to identify naturally occurring metastable pairs of particles. The lifetime of pairs was long enough for their reliable identification.



قيم البحث

اقرأ أيضاً

The spectral asymmetry of the wave energy distribution of dust particles during mode-coupling induced melting, observed for the first time in plasma crystals by Couedel et al. [Phys. Rev. E 89, 053108 (2014)], is studied theoretically and by molecula r-dynamics simulations. It is shown that an anisotropy of the well confining the microparticles selects the directions of preferred particle motion. The observed differences in intensity of waves of opposed directions is explained by a nonvanishing phonon flux. Anisotropic phonon scattering by defects and Umklapp scattering are proposed as possible reasons for the mean phonon flux.
97 - I. Laut , C. Rath , S. Zhdanov 2015
The collective motion of dust particles during the mode-coupling induced melting of a two-dimensional plasma crystal is explored in molecular dynamics simulations. The crystal is compressed horizontally by an anisotropic confinement. This compression leads to an asymmetric triggering of the mode-coupling instability which is accompanied by alternating chains of in-phase and anti-phase oscillating particles. A new order parameter is proposed to quantify the synchronization with respect to different directions of the crystal. Depending on the orientation of the confinement anisotropy, mode-coupling instability and synchronized motion are observed in one or two directions. Notably, the synchronization is found to be direction-dependent. The good agreement with experiments suggests that the confinement anisotropy can be used to explain the observed synchronization process.
The formation and melting of a mono-layered charged dust particle crystal in a DC glow discharge Argon plasma is studied. The nature of the melting/formation process is established as a first order phase transition from the nature of the variations i n the Coulomb coupling parameter, the dust temperature, the structural order parameter and from the existence of a hysteresis behavior. Our experimental results are distinctly different from existing theoretical predictions for 2D crystals based on the KTHNY mechanism or the Grain boundary induced melting and indicate a novel mechanism that is akin to a fluctuation induced first order phase transition that has not been observed before in complex plasmas.
The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new Zyflex chamber during microgravity conditions. A supersonic pro be particle excited a Mach cone with Mach number M $approx$ 1.5 - 2 and double Mach cone structure in the large weakly damped particle cloud. The speed of sound is measured with different methods and particle charge estimations are compared to calculations from standard theories. The high image resolution enables the study of Mach cones in microgravity on the single particle level of a three-dimensional complex plasma and gives insight to the dynamics. A heating of the microparticles is discovered behind the supersonic projectile but not in the flanks of the Mach cone.
Pairing of fermions is ubiquitous in nature and it is responsible for a large variety of fascinating phenomena like superconductivity, superfluidity of $^3$He, the anomalous rotation of neutron stars, and the BEC-BCS crossover in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems bear even more subtle effects, many of which lack understanding at a fundamental level. Most striking is the, yet unexplained, effect of high-temperature superconductivity in cuprates, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, the questions how many-body pairing is established at high temperature and whether it precedes superconductivity are crucial to be answered. Here, we report on the observation of pairing in a harmonically trapped two-dimensional atomic Fermi gas in the regime of strong coupling. We perform momentum-resolved photoemission spectroscopy, analogous to ARPES in the solid state, to measure the spectral function of the gas and we detect a many-body pairing gap above the superfluid transition temperature. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا