ﻻ يوجد ملخص باللغة العربية
The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new Zyflex chamber during microgravity conditions. A supersonic probe particle excited a Mach cone with Mach number M $approx$ 1.5 - 2 and double Mach cone structure in the large weakly damped particle cloud. The speed of sound is measured with different methods and particle charge estimations are compared to calculations from standard theories. The high image resolution enables the study of Mach cones in microgravity on the single particle level of a three-dimensional complex plasma and gives insight to the dynamics. A heating of the microparticles is discovered behind the supersonic projectile but not in the flanks of the Mach cone.
Three-dimensional structure of complex (dusty) plasmas was investigated under long-term microgravity conditions in the International-Space-Station-based Plasmakristall-4 facility. The microparticle suspensions were confined in a polarity-switched dc
Structure of Mach cones in a crystalline complex plasma has been studied experimentally using an intensity sensitive imaging, which resolved particle motion in three dimensions. This revealed a previously unknown out-of-plane cone structure, which ap
The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled rf discharge
Dust acoustic waves in the bulk of a dust cloud in complex plasma of low-pressure gas discharge under microgravity conditions are considered. The complex plasma is assumed to conform to the ionization equation of state (IEOS) developed in our previou
We propose a novel method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a c