ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum one-time programs

123   0   0.0 ( 0 )
 نشر من قبل Douglas Stebila
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

One-time programs are modelled after a black box that allows a single evaluation of a function, and then self-destructs. Because software can, in principle, be copied, general one-time programs exists only in the hardware token model: it has been shown that any function admits a one-time program as long as we assume access to physical devices called one-time memories. Quantum information, with its well-known property of no-cloning, would, at first glance, prevent the basic copying attack for classical programs. We show that this intuition is false: one-time programs for both classical and quantum maps, based solely on quantum information, do not exist, even with computational assumptions. We complement this strong impossibility proof by an equally strong possibility result: assuming the same basic one-time memories as used for classical one-time programs, we show that every quantum map has a quantum one-time program that is secure in the universal composability framework. Our construction relies on a new, simpler quantum authentication scheme and corresponding mechanism for computing on authenticated data.



قيم البحث

اقرأ أيضاً

Quantum-access security, where an attacker is granted superposition access to secret-keyed functionalities, is a fundamental security model and its study has inspired results in post-quantum security. We revisit, and fill a gap in, the quantum-access security analysis of the Lamport one-time signature scheme (OTS) in the quantum random oracle model (QROM) by Alagic et al.~(Eurocrypt 2020). We then go on to generalize the technique to the Winternitz OTS. Along the way, we develop a tool for the analysis of hash chains in the QROM based on the superposition oracle technique by Zhandry (Crypto 2019) which might be of independent interest.
239 - Yi-Kai Liu 2014
One-time memories (OTMs) are simple, tamper-resistant cryptographic devices, which can be used to implement sophisticated functionalities such as one-time programs. Can one construct OTMs whose security follows from some physical principle? This is n ot possible in a fully-classical world, or in a fully-quantum world, but there is evidence that OTMs can be built using isolated qubits -- qubits that cannot be entangled, but can be accessed using adaptive sequences of single-qubit measurements. Here we present new constructions for OTMs using isolated qubits, which improve on previous work in several respects: they achieve a stronger single-shot security guarantee, which is stated in terms of the (smoothed) min-entropy; they are proven secure against adversaries who can perform arbitrary local operations and classical communication (LOCC); and they are efficiently implementable. These results use Wiesners idea of conjugate coding, combined with error-correcting codes that approach the capacity of the q-ary symmetric channel, and a high-order entropic uncertainty relation, which was originally developed for cryptography in the bounded quantum storage model.
We prove that quantum-hard one-way functions imply simulation-secure quantum oblivious transfer (QOT), which is known to suffice for secure computation of arbitrary quantum functionalities. Furthermore, our construction only makes black-box use of th e quantum-hard one-way function. Our primary technical contribution is a construction of extractable and equivocal quantum bit commitments based on the black-box use of quantum-hard one-way functions in the standard model. Instantiating the Crepeau-Kilian (FOCS 1988) framework with these commitments yields simulation-secure QOT.
High-dimensional quantum key distribution (QKD) provides ultimate secure communication with secure key rates that cannot be obtained by QKD protocols with binary encoding. However, so far the proposed protocols required additional experimental resour ces, thus raising the cost of practical high-dimensional systems and limiting their use. Here, we analyze and demonstrate a novel scheme for fiber-based arbitrary-dimensional QKD, based on the most popular commercial hardware for binary time bins encoding. Quantum state transmission is tested over 40 km channel length of standard single-mode fiber, exhibiting a two-fold enhancement of the secret key rate in comparison to the binary Coherent One Way (COW) protocol, without introducing any hardware modifications. This work holds a great potential to enhance the performance of already installed QKD systems by software update alone.
357 - Xiao-Yu Cao , Jie Gu , Yu-Shuo Lu 2021
Quantum conference key agreement (CKA) enables key sharing among multiple trusted users with information-theoretic security. Currently, the key rates of most quantum CKA protocols suffer from the limit of the total efficiency among quantum channels. Inspired by the coherent one-way and twin-field quantum key distribution (QKD) protocols, we propose a quantum CKA protocol of three users. Exploiting coherent states with intensity 0 and $mu$ to encode logic bits, our protocol can break the limit. Additionally, the requirements of phase randomization and multiple intensity modulation are removed in our protocol, making its experimental demonstration simple.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا