ﻻ يوجد ملخص باللغة العربية
High-dimensional quantum key distribution (QKD) provides ultimate secure communication with secure key rates that cannot be obtained by QKD protocols with binary encoding. However, so far the proposed protocols required additional experimental resources, thus raising the cost of practical high-dimensional systems and limiting their use. Here, we analyze and demonstrate a novel scheme for fiber-based arbitrary-dimensional QKD, based on the most popular commercial hardware for binary time bins encoding. Quantum state transmission is tested over 40 km channel length of standard single-mode fiber, exhibiting a two-fold enhancement of the secret key rate in comparison to the binary Coherent One Way (COW) protocol, without introducing any hardware modifications. This work holds a great potential to enhance the performance of already installed QKD systems by software update alone.
Coherent-one-way quantum key distribution (COW-QKD), possessing the simple experimental setup and the ability against the photon-number-splitting attack, has been implemented in various experiments and commercial applications. However, recent works h
Quantum key distribution (QKD) enables unconditionally secure communication between distinct parties using a quantum channel and an authentic public channel. Reducing the portion of quantum-generated secret keys, that is consumed during the authentic
We propose a schematic setup of quantum key distribution (QKD) with an improved secret key rate based on high-dimensional quantum states. Two degrees-of-freedom of a single photon, orbital angular momentum modes, and multi-path modes, are used to enc
Terahertz (THz) communication is a topic of much research in the context of high-capacity next-generation wireless networks. Quantum communication is also a topic of intensive research, most recently in the context of space-based deployments. In this
We prove the security of theoretical quantum key distribution against the most general attacks which can be performed on the channel, by an eavesdropper who has unlimited computation abilities, and the full power allowed by the rules of classical and