ﻻ يوجد ملخص باللغة العربية
We approximately solve the Dirac equation for a new suggested generalized inversely quadratic Yukawa (GIQY) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit coupling quantum number In the framework of the spin and pseudospin (p-spin) symmetry, we obtain the energy eigenvalue equation and the corresponding eigenfunctions, in closed form, by using the parametric Nikiforov-Uvarov (NU) method. The numerical results show that the Coulomb-like tensor interaction, removes degeneracies between spin and p-spin state doublets. The Dirac solutions in the presence of exact spin symmetry are reduced to Schrodinger solutions for Yukawa and inversely quadratic Yukawa potentials.
A second-order supersymmetric transformation is presented, for the two-channel Schrodinger equation with equal thresholds. It adds a Breit-Wigner term to the mixing parameter, without modifying the eigenphase shifts, and modifies the potential matrix
Missing bound-state solutions for fermions in the background of a Killingbeck radial potential including an external magnetic and Aharonov-Bohm (AB) flux fields are examined. The correct quadratic form of the Dirac equation with vector and scalar cou
We obtain the approximate relativistic bound state of a spin-1/2 particle in the field of the Yukawa potential and a Coulomb-like tensor interaction with arbitrary spin-orbit coupling number k under the spin and pseudospin (p-spin) symmetries. The as
The Sachdev-Ye-Kitaev (SYK) model is a model of $q$ interacting fermions. Gross and Rosenhaus have proposed a generalization of the SYK model which involves fermions with different flavors. In terms of Feynman graphs, those flavors are reminiscent of
We have derived an analytical trace formula for the level density of the Henon-Heiles potential using the improved stationary phase method, based on extensions of Gutzwillers semiclassical path integral approach. This trace formula has the correct li