ترغب بنشر مسار تعليمي؟ اضغط هنا

Missing solution in a relativistic Killingbeck potential

77   0   0.0 ( 0 )
 نشر من قبل Luis Castro B
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Missing bound-state solutions for fermions in the background of a Killingbeck radial potential including an external magnetic and Aharonov-Bohm (AB) flux fields are examined. The correct quadratic form of the Dirac equation with vector and scalar couplings under the spin and pseudo-spin symmetries is showed and also we point out a misleading treatment in the literature regarding to bound-state solutions for this problem.



قيم البحث

اقرأ أيضاً

We approximately solve the Dirac equation for a new suggested generalized inversely quadratic Yukawa (GIQY) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit coupling quantum number In the framework of the spin and pseud ospin (p-spin) symmetry, we obtain the energy eigenvalue equation and the corresponding eigenfunctions, in closed form, by using the parametric Nikiforov-Uvarov (NU) method. The numerical results show that the Coulomb-like tensor interaction, removes degeneracies between spin and p-spin state doublets. The Dirac solutions in the presence of exact spin symmetry are reduced to Schrodinger solutions for Yukawa and inversely quadratic Yukawa potentials.
This paper examines the complex trajectories of a classical particle in the potential V(x)=-cos(x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there are two special classes of trajectories x(t) determined only by the energy of the particle and not by the initial position of the particle. The first class consists of periodic trajectories; that is, trajectories that return to their initial position x(0) after some real time T. The second class consists of trajectories for which there exists a real time T such that $x(t+T)=x(t) pm2 pi$. These two classes of classical trajectories are analogous to valence and conduction bands in quantum mechanics, where the quantum particle either remains localized or else tunnels resonantly (conducts) through a crystal lattice. These two special types of trajectories are associated with sets of energies of measure 0. For other energies, it is shown that for long times the average velocity of the particle becomes a fractal-like function of energy.
Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives the intertwined Hamiltonians correspond to completely inte grable systems with the symmetry operators of fourth order in momenta. In terms of components, the itertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest - constant - ansatzes for the metric matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of metric matrices, and their properties are discussed.
We solve the generalized relativistic harmonic oscillator in 1+1 dimensions in the presence of a minimal length. Using the momentum space representation, we explore all the possible signs of the potentials and discuss their bound-state solutions for fermion and antifermions. Furthermore, we also find an isolated solution from the Sturm-Liouville scheme. All cases already analyzed in the literature, are obtained as particular cases.
The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a ge neral mixing of couplings and it is shown that the space component of the nonminimal coupling is a {it sine qua non} condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا