ﻻ يوجد ملخص باللغة العربية
Based on the erasure channel FEC model as defined in multimedia wireless broadcast standards, we illustrate how doping mechanisms included in the design of erasure coding and decoding may improve the scalability of the packet throughput, decrease overall latency and potentially differentiate among classes of multimedia subscribers regardless of their signal quality. We describe decoding mechanisms that allow for linear complexity and give complexity bounds when feedback is available. We show that elaborate coding schemes which include pre-coding stages are inferior to simple Ideal Soliton based rateless codes, combined with the proposed two-phase decoder. The simplicity of this scheme and the availability of tight bounds on latency given pre-allocated radio resources makes it a practical and efficient design solution.
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcas
Streaming codes are a class of packet-level erasure codes that are designed with the goal of ensuring recovery in low-latency fashion, of erased packets over a communication network. It is well-known in the streaming code literature, that diagonally
This paper focuses on the Layered Packet Erasure Broadcast Channel (LPE-BC) with Channel Output Feedback (COF) available at the transmitter. The LPE-BC is a high-SNR approximation of the fading Gaussian BC recently proposed by Tse and Yates, who char
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of s
Jolfaei et al. used feedback to create transmit signals that are simultaneously useful for multiple users in a broadcast channel. Later, Georgiadis and Tassiulas studied erasure broadcast channels with feedback, and presented the capacity region unde