ﻻ يوجد ملخص باللغة العربية
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of secret communication over the Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with perfect secrecy. That is, each user would like to obtain its own message reliably and confidentially. First, a computable Sato-type outer bound on the secrecy capacity region is provided for a multi-antenna broadcast channel with confidential messages. Next, a dirty-paper secure coding scheme and its simplified version are described. For each case, the corresponding achievable rate region is derived under the perfect secrecy requirement. Finally, two numerical examples demonstrate that the Sato-type outer bound is consistent with the boundary of the simplified dirty-paper coding secrecy rate region.
This paper studies the problem of information theoretic secure communication when a source has private messages to transmit to $m$ destinations, in the presence of a passive adversary who eavesdrops an unknown set of $k$ edges. The information theore
The standard approach to the design of individual space-time codes is based on optimizing diversity and coding gains. This geometric approach leads to remarkable examples, such as perfect space-time block codes, for which the complexity of Maximum Li
Previous work showed that the X network with M transmitters, N receivers has MN/(M+N-1) degrees of freedom. In this work we study the degrees of freedom of the X network with secrecy constraints, i.e. the X network where some/all messages are confide
The feasibility of physical-layer-based security approaches for wireless communications in the presence of one or more eavesdroppers is hampered by channel conditions. In this paper, cooperation is investigated as an approach to overcome this problem
In this paper we investigate the practical design for the multiple-antenna cognitive radio (CR) networks sharing the geographically used or unused spectrum. We consider a single cell network formed by the primary users (PU), which are half-duplex two