ﻻ يوجد ملخص باللغة العربية
We show that Wolf et al.s 2011 analysis in Class. Quant. Grav. v28, 145017 does not support their conclusions, in particular that there is no redshift effect in atom interferometers except in inconsistent dual Lagrangian formalisms. Wolf et al. misapply both Schiffs conjecture and the results of their own analysis when they conclude that atom interferometers are tests of the weak equivalence principle which only become redshift tests if Schiffs conjecture is invalid. Atom interferometers are direct redshift tests in any formalism.
From the principle of equivalence, Einstein predicted that clocks slow down in a gravitational field. Since the general theory of relativity is based on the principle of equivalence, it is essential to test this prediction accurately. Muller, Peters
The recent realization that atom interferometers (AIs) can be used to test the gravitational redshift tests has proven to be controversial in some quarters. Here, we address the issues raised against the interpretation of AIs as redshift tests, reaff
On August 22, 2014, the satellites GSAT-0201 and GSAT-0202 of the European GNSS Galileo were unintentionally launched into eccentric orbits. Unexpectedly, this has become a fortunate scientific opportunity since the onboard hydrogen masers allow for
We report on a new test of the gravitational redshift and thus of local position invariance, an integral part of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories of gravitation. We use data spa
Atom Interferometric Gravitational-wave (GW) Space Observatory (AIGSO) is a mission concept mainly aimed at the middle-frequency (0.1 Hz - 10 Hz) GW detection. AIGSO proposes to have three spacecraft in linear formation with extension of 10 km. The t