ﻻ يوجد ملخص باللغة العربية
The recent realization that atom interferometers (AIs) can be used to test the gravitational redshift tests has proven to be controversial in some quarters. Here, we address the issues raised against the interpretation of AIs as redshift tests, reaffirming the fact that Mueller et al. [Nature 463, 926 (2010)] indeed report a gravitational redshift test.
We show that Wolf et al.s 2011 analysis in Class. Quant. Grav. v28, 145017 does not support their conclusions, in particular that there is no redshift effect in atom interferometers except in inconsistent dual Lagrangian formalisms. Wolf et al. misap
We realize and model a Rydberg-state atom interferometer for measurement of phase and intensity of radio-frequency (RF) electromagnetic waves. A phase reference is supplied to the atoms via a modulated laser beam, enabling atomic measurement of the R
We propose new multi-dimensional atom optics that can create coherent superpositions of atomic wavepackets along three spatial directions. These tools can be used to generate light-pulse atom interferometers that are simultaneously sensitive to the t
We investigate wave optical imaging of black holes with Hawking radiation. The spatial correlation function of Hawking radiation is expressed in terms of transmission and reflection coefficients for scalar wave modes and evaluated by taking summation
We have studied the interference of degenerate quantum gases in a vertical optical lattice. The coherence of the atoms leads to an interference pattern when the atoms are released from the lattice. This has been shown for a Bose-Einstein condensate i