ﻻ يوجد ملخص باللغة العربية
Proving a conjecture of Dennis Johnson, we show that the Torelli subgroup of the mapping class group has a finite generating set whose size grows cubically with respect to the genus of the surface. Our main tool is a new space called the handle graph on which the Torelli group acts cocompactly.
We prove that the cohomological dimension of the Torelli group for a closed connected orientable surface of genus g at least 2 is equal to 3g-5. This answers a question of Mess, who proved the lower bound and settled the case of g=2. We also find the
We bound the value of the Casson invariant of any integral homology 3-sphere $M$ by a constant times the distance-squared to the identity, measured in any word metric on the Torelli group $T$, of the element of $T$ associated to any Heegaard splittin
We give a new proof of a theorem of D. Calegari that says that the Cayley graph of a surface group with respect to any generating set lying in finitely many mapping class group orbits has infinite diameter. This applies, for instance, to the generating set consisting of all simple closed curves.
We develop a theory of equivariant group presentations and relate them to the second homology group of a group. Our main application says that the second homology group of the Torelli subgroup of the mapping class group is finitely generated as an $Sp(2g,mathbb{Z})$-module.
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second co