ﻻ يوجد ملخص باللغة العربية
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second cohomology group of the level p congruence subgroup of the mapping class group, following my papers The second rational homology group of the moduli space of curves with level structures and The Picard group of the moduli space of curves with level structures.
We develop a theory of equivariant group presentations and relate them to the second homology group of a group. Our main application says that the second homology group of the Torelli subgroup of the mapping class group is finitely generated as an $Sp(2g,mathbb{Z})$-module.
A mapping class group of an oriented manifold is a quotient of its diffeomorphism group by the isotopies. In the published version of Mapping class group and a global Torelli theorem for hyperkahler manifolds I made an error based on a wrong quotatio
For some $g geq 3$, let $Gamma$ be a finite index subgroup of the mapping class group of a genus $g$ surface (possibly with boundary components and punctures). An old conjecture of Ivanov says that the abelianization of $Gamma$ should be finite. In t
We prove that the cohomological dimension of the Torelli group for a closed connected orientable surface of genus g at least 2 is equal to 3g-5. This answers a question of Mess, who proved the lower bound and settled the case of g=2. We also find the
We prove a homological stability theorem for the subgroup of the mapping class group acting as the identity on some fixed portion of the first homology group of the surface. We also prove a similar theorem for the subgroup of the mapping class group