ﻻ يوجد ملخص باللغة العربية
We provide a constructive proof on the equivalence of two fundamental concepts: the global Lyapunov function in engineering and the potential function in physics, establishing a bridge between these distinct fields. This result suggests new approaches on the significant unsolved problem namely to construct Lyapunov functions for general nonlinear systems through the analogy with existing methods on potential functions. In addition, we show another connection that the Lyapunov equation is a reduced form of the generalized Einstein relation for linear systems.
We investigate the encoding of higher-dimensional logic into quantum states. To that end we introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions and investigate their structure as an algebra over the ring
We study the spatial asymptotics of Greens function for the 1d Schrodinger operator with operator-valued decaying potential. The bounds on the entropy of the spectral measures are obtained. They are used to establish the presence of a.c. spectrum
In this paper, we demonstrate, first in literature known to us, that potential functions can be constructed in continuous dissipative chaotic systems and can be used to reveal their dynamical properties. To attain this aim, a Lorenz-like system is pr
We study properties of the full partition function for the $U(1)$ 5D $mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition
This paper is a continuation of my previous work on absolutely continuous and singular spectral shift functions, where it was in particular proved that the singular part of the spectral shift function is an a.e. integer-valued function. It was also s