ﻻ يوجد ملخص باللغة العربية
In this paper, we demonstrate, first in literature known to us, that potential functions can be constructed in continuous dissipative chaotic systems and can be used to reveal their dynamical properties. To attain this aim, a Lorenz-like system is proposed and rigorously proved chaotic for exemplified analysis. We explicitly construct a potential function monotonically decreasing along the systems dynamics, revealing the structure of the chaotic strange attractor. The potential function can have different forms of construction. We also decompose the dynamical system to explain for the different origins of chaotic attractor and strange attractor. Consequently, reasons for the existence of both chaotic nonstrange attractors and nonchaotic strange attractors are clearly discussed within current decomposition framework.
The Nikolaevskiy model for pattern formation with continuous symmetry exhibits spatiotemporal chaos with strong scale separation. Extensive numerical investigations of the chaotic attractor reveal unexpected scaling behavior of the long-wave modes. S
Certain nonlinear systems can switch between dynamical attractors occupying different regions of phase space, under variation of parameters or initial states. In this work we exploit this feature to obtain reliable logic operations. With logic output
We consider the motion of a particle subjected to the constant gravitational field and scattered inelasticaly by hard boundaries which possess the shape of parabola, wedge, and hyperbola. The billiard itself performs oscillations. The linear dependen
We studied correlations between different nodes in small electronic networks with active links operating as jitter generators. Unexpectedly, we found that under certain conditions signals from the most remote nodes in the networks correlate stronger
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterat