ﻻ يوجد ملخص باللغة العربية
We present the characterization and calibration of the Slow-Scan observation mode of the Far-Infrared Surveyor (FIS) onboard the AKARI satellite. The FIS, one of the two focal-plane instruments on AKARI, has four photometric bands between 50--180 um with two types of Ge:Ga array detectors. In addition to the All-Sky Survey, FIS has also taken detailed far-infrared images of selected targets by using the Slow-Scan mode. The sensitivity of the Slow-Scan mode is one to two orders of magnitude better than that of the All-Sky Survey, because the exposure time on a targeted source is much longer. The point spread functions (PSFs) were obtained by observing several bright point-like objects such as asteroids, stars, and galaxies. The derived full widths at the half maximum (FWHMs) are ~30 for the two shorter wavelength bands and ~40 for the two longer wavelength bands, being consistent with those expected by the optical simulation, although a certain amount of excess is seen in the tails of the PSFs. The flux calibration has been performed by the observations of well-established photometric calibration standards (asteroids and stars) in a wide range of fluxes. After establishing the method of aperture photometry, the photometric accuracy for point-sources is better than +-15% in all of the bands expect for the longest wavelength.
We present a general surface brightness correction method for compact extended sources imaged in the slow-scan pointed observation mode of the Far-Infrared Surveyor (FIS) aboard the AKARI Infrared Astronomical Satellite. Our method recovers correct s
The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky wi
We report basic far-infrared (FIR) properties of eight blue compact dwarf galaxies (BCDs) observed by AKARI. We measure the fluxes at the four FIS bands (wavelengths of 65 um, 90 um, 140 um, and 160 um). Based on these fluxes, we estimate basic quant
We present the characterization and calibration of the slow-scan observation mode of the Infrared Camera (IRC) on-board AKARI. The IRC slow-scan observations were operated at the S9W (9 $mu$m) and L18W (18 $mu$m) bands. We have developed a toolkit fo
The nearby face-on spiral galaxy M101 has been observed with the Far-Infrared Surveyor (FIS) onboard AKARI. The far-infrared four-band images reveal fine spatial structures of M101, which include global spiral patterns, giant HII regions embedded in