ﻻ يوجد ملخص باللغة العربية
We study the properties of the Fraunhofer diffraction patterns produced by Gaussian beams crossing spiral phase plates. We show, both analytically and numerically, that off-axis displacements of the input beam produce asymmetric diffraction patterns. The intensity profile along the direction of maximum asymmetry shows two different peaks. We find that the intensity ratio between these two peaks decreases exponentially with the off-axis displacement of the incident beam, the decay being steeper for higher strengths of the optical singularity of the spiral phase plate. We analyze how this intensity ratio can be used to measure small misalignments of the input beam with a very high precision.
Numerical simulation is used to analyze statistical characteristics of vortex beams propagating in the atmosphere. The cumulative distribution function and the probability density function of intensity fluctuations are compared for Gaussian beams and
A method to generate the optical vortex beam with arbitrary superposition of different orders of orbital angular momentum (OAM) on a photonic chip is proposed. The distributed Fourier holographic gratings are proposed to convert the propagating wave
Direct measurements of the stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With few exceptions, Zeeman signatures are hidden in data noise and a number of methods have been developed to measure t
A new method to generate and control the amplitude and phase distributions of a optical vortex beam is proposed. By introducing a holographic grating on top of the dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be
We experimentally study the emergence of high-energy equilibrium states in a chiral vortex gas of like-circulation vortices realized within a disk-shaped atomic Bose-Einstein condensate. In contrast to the familiar triangular Abrikosov lattice, the l