ﻻ يوجد ملخص باللغة العربية
A method to generate the optical vortex beam with arbitrary superposition of different orders of orbital angular momentum (OAM) on a photonic chip is proposed. The distributed Fourier holographic gratings are proposed to convert the propagating wave in waveguides to a vortex beam in the free space, and the components of different OAMs can be controlled by the amplitude and phases of on-chip incident light based on the principle of Fourier transformation. As an example, we studied a typical device composed of nine Fourier holographic gratings on fan-shaped waveguides. By scalar diffraction calculation, the OAM of the optical beam from the reconfigurable vortex beam generator can be controlled on-demand from -2nd to 2nd by adjusting the phase of input light fields, which is demonstrated numerically with the fidelity of generated optical vortex beam above 0.69. The working bandwidth of the Fourier holographic grating is about 80 nm with a fidelity above 0.6. Our work provides an feasible method to manipulate the vortex beam or detect arbitrary superposition of OAMs, which can be used in integrated photonics structures for optical trapping, signal processing, and imaging.
A new method to generate and control the amplitude and phase distributions of a optical vortex beam is proposed. By introducing a holographic grating on top of the dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be
Fractional vortex beams (FVBs) with non-integer topological charges attract much attention due to unique features of propagations, but there still exist different viewpoints on the change of their total vortex strength. Here we have experimentally de
Fourier back plane (FBP) imaging technique has been widely used in the frontier research of nanophotonics. In this paper, based on the diffraction theory and wave front transformation principle, the FBP imaging basic principle, the setup realization
The rapidly maturing integrated Kerr microcombs show significant potential for microwave photonics. Yet, state-of-the-art microcomb based radiofrequency (RF) filters have required programmable pulse shapers, which inevitably increase the system cost,
We study the properties of the Fraunhofer diffraction patterns produced by Gaussian beams crossing spiral phase plates. We show, both analytically and numerically, that off-axis displacements of the input beam produce asymmetric diffraction patterns.