ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Charge Radii of Be-7,9,10 and the one-neutron halo nucleus Be-11

588   0   0.0 ( 0 )
 نشر من قبل Wilfried N\\\"ortersh\\\"auser
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear charge radii of $^{7,9,10,11}$Be have been determined by high-precision laser spectroscopy. On-line measurements were performed with collinear laser spectroscopy in the $2s_{1/2} to 2p_{1/2}$ transition on a beam of Be$^{+}$ ions. Collinear and anticollinear laser beams were used simultaneously and the absolute frequency determination using a frequency comb yielded an accuracy in the isotope-shift measurements of about 1 MHz. Combination with accurate calculations of the mass-dependent isotope shifts yield nuclear charge radii. The charge radius decreases from $^7$Be to $^{10}$Be and then increases for the halo nucleus $^{11}$Be. When comparing our results with predictions of {it ab initio} nuclear structure calculations we find good agreement. Additionally, the nuclear magnetic moment of $^7$Be was determined to be $-1.3995(5)mu_{rm N}$ and that of $^{11}$Be from a previous $beta$-NMR measurement was confirmed.



قيم البحث

اقرأ أيضاً

The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly-bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Mo dern direct reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus Be-11, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the Be-10(d,p) reaction has been used in inverse kinematics at four beam energies to study the structure of Be-11. The spectroscopic factors extracted using the adiabatic model, were found to be consistent across the four measurements, and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in a nlj = 2s1/2 state coupled to the ground state of Be-10 is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1/2 state.
Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. In this work, by studying the dependence of charge and neutron radii, and neutron skin, on nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of different optimization protocols targeting specific nuclear properties. By performing the Monte-Carlo sampling of reasonable functionals around the optimal parametrization, we study correlations between nuclear matter paramaters and observables characterizing charge and neutron distributions. We demonstrate the existence of the strong converse relation between the nuclear charge radii and the saturation density of symmetric nuclear matter and also between the neutron skins and the slope of the symmetry energy. For functionals optimized to experimental binding energies only, proton and neutron radii are weakly correlated due to canceling trends from different nuclear matter parameters. We show that by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. The neutron skin uncertainty primarily depends on the slope of the symmetry energy. Consequently, imposing a constraint on both $rho_0$ and $L$ practically determines the nuclear size, modulo small variations due to shell effects.
109 - T.B. Webb , S.M. Wang , K.W. Brown 2018
The structure of the extremely proton-rich nucleus $^{11}_{~8}$O$_3$, the mirror of the two-neutron halo nucleus $^{11}_{~3}$Li$_8$, has been studied experimentally for the first time. Following two-neutron knockout reactions with a $^{13}$O beam, th e $^{11}$O decay products were detected after two-proton emission and used to construct an invariant-mass spectrum. A broad peak of width $sim$3,MeV was observed. Within the Gamow coupled-channel approach, it was concluded that this peak is a multiplet with contributions from the four-lowest $^{11}$O resonant states: $J^{pi}$=3/2$^-_1$, 3/2$^-_2$, 5/2$^+_1$, and 5/2$^+_2$. The widths and configurations of these states show strong, non-monotonic dependencies on the depth of the $p$-$^9$C potential. This unusual behavior is due to the presence of a broad threshold resonant state in $^{10}$N, which is an analog of the virtual state in $^{10}$Li in the presence of the Coulomb potential. After optimizing the model to the data, only a moderate isospin asymmetry between ground states of $^{11}$O and $^{11}$Li was found.
Coincidences between charged particles emitted in the $beta$-decay of $^{11}$Li were observed using highly segmented detectors. The breakup channels involving three particles were studied in full kinematics allowing for the reconstruction of the exci tation energy of the $^{11}$Be states participating in the decay. In particular, the contribution of a previously unobserved state at 16.3 MeV in $^{11}$Be has been identified selecting the $alpha$ + $^7$He$toalpha$ + $^6$He+n channel. The angular correlations between the $alpha$ particle and the center of mass of the $^6$He+n system favors spin and parity assignment of 3/2$^-$ for this state as well as for the previously known state at 18 MeV.
The nuclear charge radius of Li-11 has been determined for the first time by high precision laser spectroscopy. On-line measurements at TRIUMF-ISAC yielded a Li-7 - Li-11 isotope shift (IS) of 25101.23(13) MHz for the Doppler-free 2s - 3s transition. IS precision for all other bound Li isotopes was also improved. Differences from calculated mass-based IS yield values for change in charge radius along the isotope chain. The charge radius decreases monotonically from Li-6 to Li-9, and then increases from 2.217(35) fm to 2.467(37) fm for Li-11. This is compared to various models, and it is found that a combination of halo neutron correlation and intrinsic core excitation best reproduces the experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا