ﻻ يوجد ملخص باللغة العربية
Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. In this work, by studying the dependence of charge and neutron radii, and neutron skin, on nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of different optimization protocols targeting specific nuclear properties. By performing the Monte-Carlo sampling of reasonable functionals around the optimal parametrization, we study correlations between nuclear matter paramaters and observables characterizing charge and neutron distributions. We demonstrate the existence of the strong converse relation between the nuclear charge radii and the saturation density of symmetric nuclear matter and also between the neutron skins and the slope of the symmetry energy. For functionals optimized to experimental binding energies only, proton and neutron radii are weakly correlated due to canceling trends from different nuclear matter parameters. We show that by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. The neutron skin uncertainty primarily depends on the slope of the symmetry energy. Consequently, imposing a constraint on both $rho_0$ and $L$ practically determines the nuclear size, modulo small variations due to shell effects.
A unified theoretical model reproducing charge radii of known atomic nuclei plays an essential role to make extrapolations in the regions of unknown nuclear size. Recently developed new ansatz which phenomenally takes into account the neutron-proton
The artificial neural networks (ANNs) have emerged with successful applications in nuclear physics as well as in many fields of science in recent years. In this paper, by using (ANNs), we have constructed a formula for the nuclear charge radii. Stati
Nuclear charge radii of $^{7,9,10,11}$Be have been determined by high-precision laser spectroscopy. On-line measurements were performed with collinear laser spectroscopy in the $2s_{1/2} to 2p_{1/2}$ transition on a beam of Be$^{+}$ ions. Collinear a
The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within the framework of the extend Bruecker-Hartree-Fock (BHF) approach combined with the BCS theory. The self-energy up to the second-order contribut
We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the E