ترغب بنشر مسار تعليمي؟ اضغط هنا

Reversible strain effect on the magnetization of LaCoO3 films

285   0   0.0 ( 0 )
 نشر من قبل Diana Rata
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetization of ferromagnetic LaCoO3 films grown epitaxially on piezoelectric substrates has been found to systematically decrease with the reduction of tensile strain. The magnetization change induced by the reversible strain variation reveals an increase of the Co magnetic moment with tensile strain. The biaxial strain dependence of the Curie temperature is estimated to be below 4K/% in the as-grown tensile strain state of our films. This is in agreement with results from statically strained films on various substrates.



قيم البحث

اقرأ أيضاً

We investigate the structure and magnetic properties of thin films of the LaCoO$_{3}$ compound. Thin films are deposited by pulsed laser deposition on various substrates in order to tune the strain from compressive to tensile. Single-phase (001) orie nted LaCoO$_{3}$ layers were grown on all substrates despite large misfits. The tetragonal distortion of the films covers a wide range from -2% to 2.8%. Our LaCoO$_{3}$ films are ferromagnetic with Curie temperature around 85 K, contrary to the bulk. The total magnetic moment is below $1mu_{B}$/Co$^{3+}$, a value relatively small for an exited spin-state of the Co$^{3+}$ ions, but comparable to values reported in literature. A correlation of strain states and magnetic moment of Co$^{3+}$ ions in LaCoO$_{3}$ thin films is observed.
119 - D. Fuchs , L. Dieterle , E. Arac 2008
Epitaxially strained LaCoO3 (LCO) thin films were grown with different film thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates. After initial pseudomorphic growth the films start to relieve their strain partly by the for mation of periodic nano-twins with twin planes predominantly along the <100> direction. Nano-twinning occurs already at the initial stage of growth, albeit in a more moderate way. Pseudomorphic grains, on the other hand, still grow up to a thickness of at least several tenths of nanometers. The twinning is attributed to the symmetry lowering of the epitaxially strained pseudo-tetragonal structure towards the relaxed rhombohedral structure of bulk LCO. However, the unit-cell volume of the pseudo-tetragonal structure is found to be nearly constant over a very large range of t. Only films with t > 130 nm show a significant relaxation of the lattice parameters towards values comparable to those of bulk LCO.
We investigated the crystal and electronic structures of ferroelectric Bi4Ti3O12 (BiT) single crystalline thin films site-specifically substituted with LaCoO3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO3 and SrTiO3 substrat es to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition metal 3d states, based on a spectroscopic ellipsometry study. In particular, the Co 3d state seems to largely overlap with the Ti t2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition metal oxides.
387 - K. Yamagami , K. Ikeda , A. Hariki 2021
The strain effect from a substrate is an important experimental route to control electronic and magnetic properties in transition-metal oxide (TMO) thin films. Using hard x-ray photoemission spectroscopy, we investigate the strain dependence of the v alence states in LaNiO$_{3}$ thin films, strongly correlated perovskite TMO, grown on four substrates: LaAlO$_{3}$, (LaAlO$_{3}$)$_{0.3}$(SrAl$_{0.5}$Ta$_{0.5}$O$_{3}$)$_{0.7}$, SrTiO$_{3}$, and DyScO$_{3}$. A Madelung potential analysis of core-level spectra suggests that the point-charge description is valid for the La ions while it breaks down for Ni and O ions due to a strong covalent bonding between the two. A clear x-ray photon-energy dependence of the valence spectra is analyzed by the density functional theory, which points to a presence of the La 5$p$ state near the Fermi level.
Present study reveals that the free energy landscape of the La5/8-yPryCa3/8MnO3 (LPCMO) system could be modified by elastic strain interaction in the epitaxial thin films. Epitaxial LPCMO thin films of various thicknesses are grown on LaAlO3 substrat e by pulsed laser deposition. With increasing thickness, by virtue of island growth morphology, strain disorder is invoked in thin films during strain relaxation process. The length-scale of phase separation is found to be highly correlated with strain disorder. Magneto-transport measurements demonstrate that coherent strain stabilizes charge ordered insulating phase while strain disorder stabilizes metallic phase. Resistivity under cooling and heating in unequal field (CHUF) protocol exhibits lower value of freezing temperature for strain disordered films compared to bulk system. Raman spectroscopy reveals that the charge ordered insulating and ferromagnetic metallic phases are structurally dissimilar and possess monoclinic and rhombohedral like symmetries respectively. Interfaces between two phases strongly influence low temperature glassy metastable state resulting in different phase separation states in the LPCMO thin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا