ﻻ يوجد ملخص باللغة العربية
Based on cite{DH94}, we introduce a bijective correspondence between first order differential calculi and the graph structure of the symmetric lattice that allows one to encode completely the interconnection structure of the graph in the exterior derivative. As a result, we obtain the Grassmannian character of the lattice as well as the mutual commutativity between basic vector-fields on the tangent space. This in turn gives several similarities between the Clifford setting and the algebra of endomorphisms endowed by the graph structure, such as the hermitian structure of the lattice as well as the Clifford-like algebra of operators acting on the lattice. This naturally leads to a discrete version of Clifford Analysis.
Wavelets on the sphere are reintroduced and further developed independently of the original group theoretic formalism, in an equivalent, but more straightforward approach. These developments are motivated by the interest of the scale-space analysis o
Using the fact that the algebra M(3,C) of 3 x 3 complex matrices can be taken as a reduced quantum plane, we build a differential calculus Omega(S) on the quantum space S defined by the algebra C^infty(M) otimes M(3,C), where M is a space-time manifo
For a noncompact complex hyperbolic space form of finite volume $X=mathbb{B}^n/Gamma$, we consider the problem of producing symmetric differentials vanishing at infinity on the Mumford compactification $overline{X}$ of $X$ similar to the case of prod
This paper studies the differential lattice, defined to be a lattice $L$ equipped with a map $d:Lto L$ that satisfies a lattice analog of the Leibniz rule for a derivation. Isomorphic differential lattices are studied and classifications of different
This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of manifolds is presented,and explicit examples are g