ﻻ يوجد ملخص باللغة العربية
We made a 100 ks observation of the Sagittarius (Sgr) B1 region at (l, b) = (0.5, -0.1) near to the Galactic center (GC) with the Suzaku/XIS. Emission lines of S XV, Fe I, Fe XXV, and Fe XXVI were clearly detected in the spectrum. We found that the Fe XXV and Fe XXVI line emissions smoothly distribute over the Sgr B1 and B2 regions connecting from the GC. This result suggests that the GC hot plasma extends at least up to the Sgr B region with a constant temperature. There are two diffuse X-ray sources in the observed region. One of the two (G0.42-0.04) is newly discovered, and exhibits a strong S XV Ka emission line, suggesting a candidate for a supernova remnant located in the GC region. The other one (M0.51-0.10), having a prominent Fe I Ka emission line and a strongly absorbed continuum, is likely to be an X-ray reflection nebula. There is no near source bright enough to irradiate M0.51-0.10. However, the Fe I Ka emission can be explained if Sgr A* was ~ 10^6 times brighter 300 years ago, the light travel time for 100 pc to M0.51-0.10, than it is at present.
We present the Suzaku results on a new candidate of a supernova remnant (SNR) in the Sagittarius C region. We detected diffuse X-rays of an elliptical shape (G359.41-0.12) and a chimney-like structure (the Chimney), both of which were fitted with a t
We present evidence supporting a SNR origin for the radio source G337.2+0.1, which was discovered along the line of sight to the Norma spiral arm in the MOST 843-MHz radio survey. The radio source is spatially superposed to the unidentified ASCA sour
We present an ASCA discovery of diffuse hard X-ray emission from the Sgr C complex with its peak in the vicinity of the molecular cloud core. The X-ray spectrum is characterized by a strong 6.4-keV line and large absorption. These properties suggest
We present an X-ray study of the mixed-morphology supernova remnant CTB 1 (G116.9+0.2) observed with Suzaku. The 0.6-2.0 keV spectra in the northeast breakout region of CTB 1 are well represented by a collisional ionization-equilibrium plasma model w
A compact complex of line emission filaments in the galactic plane has the appearance of those expected of an evolved supernova remnant though non-thermal radio and X-ray emission have not yet been detected. This optical emission line region has now