ترغب بنشر مسار تعليمي؟ اضغط هنا

A new candidate supernova remnant G 70.5+1.9

186   0   0.0 ( 0 )
 نشر من قبل Panayotis Boumis
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Mavromatakis




اسأل ChatGPT حول البحث

A compact complex of line emission filaments in the galactic plane has the appearance of those expected of an evolved supernova remnant though non-thermal radio and X-ray emission have not yet been detected. This optical emission line region has now been observed with deep imagery and both low and high-dispersion spectroscopy. Diagnostic diagrams of the line intensities from the present spectra and the new kinematical observations both point to a supernova origin. However, several features of the nebular complex still require an explanation within this interpretation.



قيم البحث

اقرأ أيضاً

We present the Suzaku results on a new candidate of a supernova remnant (SNR) in the Sagittarius C region. We detected diffuse X-rays of an elliptical shape (G359.41-0.12) and a chimney-like structure (the Chimney), both of which were fitted with a t hin thermal the model of kBT ~1 keV temperature. The absorption columns are same between these two structures, indicating that both are located at the same distance in the same line of sight. The narrow band image and one-dimensional profile of S XV Kalpha at 2.45 keV show that the Chimney is emanating from G359.41-0.12. Therefore, these two sources are physically connected with each other. The sum of the thermal energies of the Chimney and G359.41-0.12 is estimated to be 1.4x10^50 erg, typical for a galactic SNR. G359.41-0.12 is likely to be a new SNR candidate and the Chimney is an associated outflow.
We present complicated dust structures within multiple regions of the candidate supernova remnant (SNR) the `Tornado (G357.7-0.1) using observations with Spitzer and Herschel. We use Point Process Mapping, PPMAP, to investigate the distribution of du st in the Tornado at a resolution of 8, compared to the native telescope beams of 5-36. We find complex dust structures at multiple temperatures within both the head and the tail of the Tornado, ranging from 15 to 60K. Cool dust in the head forms a shell, with some overlap with the radio emission, which envelopes warm dust at the X-ray peak. Akin to the terrestrial sandy whirlwinds known as `Dust Devils, we find a large mass of dust contained within the Tornado. We derive a total dust mass for the Tornado head of 16.7 solar masses, assuming a dust absorption coefficient of kappa_300 =0.56m^2 kg^1, which can be explained by interstellar material swept up by a SNR expanding in a dense region. The X-ray, infra-red, and radio emission from the Tornado head indicate that this is a SNR. The origin of the tail is more unclear, although we propose that there is an X-ray binary embedded in the SNR, the outflow from which drives into the SNR shell. This interaction forms the helical tail structure in a similar manner to that of the SNR W50 and microquasar SS433.
Deep optical CCD images of the supernova remnant G 32.8-0.1 were obtained where filamentary and diffuse emission was discovered. The images were acquired in the emission lines of Halpha+[N II] and [S II]. Filamentary and diffuse structures are detect ed in most areas of the remnant, while no significant [O III] emission is present. The flux-calibrated images suggest that the optical emission originates from shock-heated gas since the [S II]/Halpha ratio is greater than 1.2. The Spitzer images at 8 micron and 24 micron show a few filamentary structures to be correlated with the optical filaments, while the radio emission at 1.4 GHz in the same area is found to be very well correlated with the brightest optical filaments. Furthermore, the results from deep long-slit spectra also support the origin of the emission to be from shock-heated gas ([S II]/Halpha > 1.5). The absence of [O III] emission indicates slow shocks velocities into the interstellar clouds (< 100 km/s), while the [S II] 6716/6731 ratio indicates electron densities up to ~200 cm^{-3}. Finally, the Halpha emission is measured to lie between 1.8 to 4.6 x 10^{-17} erg/s/cm^2/arcsec^2, while from VGPS HI images a distance to the SNR is estimated to be between 6 to 8.5 kpc.
129 - Xianghua Li 2020
We present a radio polarization study of the supernova remnant CTB 80 based on images at 1420 MHz from the Canadian Galactic plane survey, at 2695 MHz from the Effelsberg survey of the Galactic plane, and at 4800 MHz from the Sino-German 6cm polariza tion survey of the Galactic plane. We obtained a rotation measure (RM) map using polarization angles at 2695 MHz and 4800 MHz as the polarization percentages are similar at these two frequencies. RM exhibits a transition from positive values to negative values along one of the shells hosting the pulsar PSR B1951+32 and its pulsar wind nebula. The reason for the change of sign remains unclear. We identified a partial shell structure, which is bright in polarized intensity but weak in total intensity. This structure could be part of CTB 80 or part of a new supernova remnant unrelated to CTB 80.
63 - X. Y. Gao , P. Reich , W. Reich 2020
Sensitive radio continuum surveys of the Galactic plane are ideal for discovering new supernova remnants (SNRs). From the Sino-German {lambda}6 cm polarisation survey of the Galactic plane, an extended shell-like structure has been found at l = 21.8 degree, b = -3.0 degree, which has a size of about 1 degree. New observations were made with the Effelsberg 100-m radio telescope at {lambda}11 cm to estimate the source spectrum together with the Urumqi {lambda}6 cm and the Effelsberg {lambda}21 cm data. The spectral index of G21.8-3.0 was found to be {alpha} = -0.72 {pm} 0.16. Polarised emission was mostly detected in the eastern half of G21.8-3.0 at both {lambda}6 cm and {lambda}11 cm. These properties, together with the H{alpha} filament along its northern periphery and the lack of infrared emission, indicate that the emission is non-thermal as is usual in shell-type SNRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا