ﻻ يوجد ملخص باللغة العربية
Diffusion Monte Carlo (DMC) calculations typically yield highly accurate results in solid-state and quantum-chemical calculations. However, operators that do not commute with the Hamiltonian are at best sampled correctly up to second order in the error of the underlying trial wavefunction, once simple corrections have been applied. This error is of the same order as that for the energy in variational calculations. Operators that suffer from these problems include potential energies and the density. This paper presents a new method, based on the Hellman-Feynman theorem, for the correct DMC sampling of all operators diagonal in real space. Our method is easy to implement in any standard DMC code.
Extended solids are frequently simulated as finite systems with periodic boundary conditions, which due to the long-range nature of the Coulomb interaction may lead to slowly decaying finite- size errors. In the case of Quantum-Monte-Carlo simulation
We report a study of the electronic dissociation energy of the water dimer using quantum Monte Carlo (QMC) techniques. We have performed variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) calculations of the electronic grou
An ab-initio method for determining the dynamical structure function of an interacting many--body quantum system has been devised by combining a generalized integral transform method with Quantum Monte Carlo methods. As a first application, the coher
We use a diffusion Monte Carlo method to solve the many-body Schrodinger equation describing fully-heavy tetraquark systems. This approach allows to reduce the uncertainty of the numerical calculation at the percent level, accounts for multi-particle
We present an overview of the variational and diffusion quantum Monte Carlo methods as implemented in the CASINO program. We particularly focus on developments made in the last decade, describing state-of-the-art quantum Monte Carlo algorithms and so