ﻻ يوجد ملخص باللغة العربية
We consider the stability of periodic gravity free-surface water waves traveling downstream at a constant speed over a shear flow of finite depth. In case the free surface is flat, a sharp criterion of linear instability is established for a general class of shear flows with inflection points and the maximal unstable wave number is found. Comparison to the rigid-wall setting testifies that free surface has a destabilizing effect. For a class of unstable shear flows, the bifurcation of nontrivial periodic traveling waves of small-amplitude is demonstrated at any wave number. We show the linear instability of small nontrivial waves bifurcated at an unstable wave number of the background shear flow. The proof uses a new formulation of the linearized water-wave problem and a perturbation argument. An example of the background shear flow of unstable small-amplitude periodic traveling waves is constructed for an arbitrary vorticity strength and for an arbitrary depth, illustrating that vorticity has a subtle influence on the stability of water waves.
In this paper, we study the number of traveling wave families near a shear flow $(u,0)$ under the influence of Coriolis force, where the traveling speeds lie outside the range of $u$. Let $beta$ be the Rossby number. If the flow $u$ has at least one
The well-known Stokes waves refer to periodic traveling waves under the gravity at the free surface of a two dimensional full water wave system. In this paper, we prove that small-amplitude Stokes waves with infinite depth are nonlinearly unstable un
We consider the linearized instability of 2D irrotational solitary water waves. The maxima of energy and the travel speed of solitary waves are not obtained at the highest wave, which has a 120 degree angle at the crest. Under the assumption of non-e
In this work, we consider the mathematical theory of wind generated water waves. This entails determining the stability properties of the family of laminar flow solutions to the two-phase interface Euler equation. We present a rigorous derivation of
We study stationary capillary-gravity waves in a two-dimensional body of water that rests above a flat ocean bed and below vacuum. This system is described by the Euler equations with a free surface. Our main result states that there exist large fami