ﻻ يوجد ملخص باللغة العربية
In this work, we consider the mathematical theory of wind generated water waves. This entails determining the stability properties of the family of laminar flow solutions to the two-phase interface Euler equation. We present a rigorous derivation of the linearized evolution equations about an arbitrary steady solution, and, using this, we give a complete proof of the instability criterion of Miles. Our analysis is valid even in the presence of surface tension and a vortex sheet (discontinuity in the tangential velocity across the air--sea interface). We are thus able to give a unified equation connecting the Kelvin--Helmholtz and quasi-laminar models of wave generation.
We consider the linearized instability of 2D irrotational solitary water waves. The maxima of energy and the travel speed of solitary waves are not obtained at the highest wave, which has a 120 degree angle at the crest. Under the assumption of non-e
The well-known Stokes waves refer to periodic traveling waves under the gravity at the free surface of a two dimensional full water wave system. In this paper, we prove that small-amplitude Stokes waves with infinite depth are nonlinearly unstable un
We consider the stability of periodic gravity free-surface water waves traveling downstream at a constant speed over a shear flow of finite depth. In case the free surface is flat, a sharp criterion of linear instability is established for a general
Electromagnetic cyclotron waves (ECWs) near the proton cyclotron frequency are frequently observed in the solar wind, yet their generation mechanism is still an open question. Based on the Wind data during the years 2005$-$2015, this paper carries ou
In this paper, we consider the explicit wave-breaking mechanism and its dynamical behavior near this singularity for the generalized b-equation. This generalized b-equation arises from the shallow water theory, which includes the Camassa-Holm equatio