في هذا البحث ، تم اقتراح طريقة جديدة منخفضة التكلفة للتعرف على لوحات ترخيص المركبات (LPR) والتي يمكن استخدامها بسهولة في لوحات أخرى.
تم استخدام تقنية تجزئة LP جديدة مع ثلاث مجموعات من نواقل الميزات مع مطابقة القالب لتشكيل الوحدتين الرئيسيتين: وحدة توطين لوحة الترخيص ووحدة LPR.
تم اختبار هذه الطريقة على أكثر من 238 صورة مركبة مأخوذة من مشاهد مختلفة بخطوط وخلفيات مختلفة من دولتين عربيتين. كانت دقة التجزئة للنظام المنفذ 97.5٪ مع دقة التعرف على 99٪ للصور المشوهة إلى حد ما. يوضح النموذج المقدم أنه على الرغم من التأثير السلبي للظلال والشقوق والأوساخ وفصل الشخصيات ، أظهر النظام معدل نجاح إجمالي بنسبة 92٪ في توطين الألواح و 95٪ لتجزئة اللوحات و 92٪ للتعرف على البلد والمدينة و 99 ٪ لتجزئة الرقم والتمييز.
أدى الجمع بين جميع المعدلات إلى دقة نظام كلية بلغت 93٪. مقارنة بالعديد من أنظمة LPR المتطورة ، يستخدم هذا النظام المطور حديثًا 3 مجموعات تدريب صغيرة تقلل من أوقات تشغيل الحل المقترح إلى أقل من 5 ثوانٍ باستخدام MATLAB R2008A الذي يعمل على Compaq 8510W مع ذاكرة وصول عشوائي (RAM) 4 جيجا. النتائج قابلة للمقارنة ، وفي بعض الحالات تكون أفضل مع ظروف مقيدة مثل مكان الانحراف وحجم اللوحة والإضاءة والخلفية.
No English abstract
المراجع المستخدمة
Guangming Li, Zhenqi He, and Huilin Zhang Proc, 2010, The vehicle license plate location based on mathematical morphology and geometric characteristics. SPIE 7820, 78200Y
تجذب تصنيف المعنويات والكشف عن السخرية الكثير من الاهتمام من قبل مجتمع البحوث NLP. ومع ذلك، فإن حل هاتين المشكلتين باللغة العربية وعلى أساس بيانات الشبكة الاجتماعية (I.E.، Twitter) لا يزال مصلحة أقل. في هذه الورقة نقدم حلولا مخصصة لتصنيف المعنويات وم
تقدم هذه الورقة واحدة من أفضل خمس حلول الفوز للمهمة المشتركة بشأن السخرية والكشف عن المعنويات باللغة العربية (الكشف عن السخرية SubTask-1).الهدف من المهمة هو تحديد ما إذا كانت سقسقة الساخرة أم لا.تم تطوير حلنا باستخدام تقنية فرقة مع نموذج أرابت المدرب
تمثل قدرة تعلم التعلم من تمثيلات الإعجاب خطوة رئيسية لأنظمة NLP القابلة للتفسير حيث تتيح السيطرة على الميزات اللغوية الكامنة.تعتمد معظم الأساليب التي يتعرض لها DEVENTANGLEMELLEMES على المتغيرات المستمرة، سواء بالنسبة للصور والنص.نقول أنه على الرغم من
الكشف عن السخرية هو واحد من أفضل المهام الصعبة في تصنيف النص، لا سيما بالنسبة للغة العربية غير الرسمية بالغشاء النحوي والدلي العالي.نقترح أنظمتين تسخير المعرفة من مهام متعددة لتحسين أداء المصنف.تقدم هذه الورقة أنظمة المستخدمة في مشاركتنا إلى المهام ا
إن استكشاف جوانب المعنى السورية الضمني أو غير المحدود في السياق مهم لفهم الجملة.في هذه الورقة، نقترح هندسة رواية قائمة على الإحلال في اكتشاف متطلبات المراجعة.الهدف هو تحسين التفاهم، معالجتها بعض الأنواع من المراجعات، خاصة بالنسبة لنوع الضمير المستبدل