يهدف المشروع في المقام الأول إلى توظيف الذكاء الاصطناعي ، وتحديداً مهارات برمجة شبكة عصبية حيث الشبكات العصبية بدورها هي شبكات مهتمة بالتدريب والتعلم من الخطأ ، وتوظيف هذا الخطأ لتحقيق أفضل النتائج.
(CNN) على وجه الخصوص هي واحدة من أهم الشبكات العصبية التي تعالج مشاكل وقضايا التصنيف. وبالتالي فإن هذا المشروع يهدف إلى تصميم شبكة عصبية التفافية تصنف المركبات إلى عدة أنواع حيث سنقوم بتصميم الشبكة وتدريبها على قاعدة البيانات حيث أن قاعدة البيانات تتضمن صورًا لأنواع متعددة من المركبات وستقوم الشبكة بتصنيف كل صورة إلى نوعها ، بعد تعديل الصور وإجراء التغييرات المناسبة وتحويلها إلى اللون الرمادي واكتشاف الحواف والخطوط وبعد أن تصبح الصور جاهزة تبدأ عملية التدريب وبعد انتهاء عملية التدريب سنخرج بنتائج التصنيف وبعدها اختبار بمجموعة جديدة من الصور ومن اهم تطبيقات هذا المشروع الالتزام برصف السيارات والشاحنات والمركبات بشكل عام وكأن صورة تم ادخالها كسيارة لعينة السيارة وهي شاحنة ، على سبيل المثال ، سيعطي هذا خطأ حيث ستكتشف الشبكة ذلك من خلال فحصها وتصنيفها. كشاحنة ، نكتشف أن هناك انتهاكًا لقوانين الرصف
The project aims primarily to employ the benefits of artificial intelligence, specifically the characteristics of programming a neuronal network where neuronal networks, in turn, are networks that are interested in training and learning from error, and employing this error to achieve optimal results.Convolution NeuralNetworks(CNN)in particular are one of the most important neuronal networks that address classification problems and issues. Thus, this project is to design a convolution neuronal network that classifies vehicles into several types where we will design the network and train them on the database as the database includes pictures of several types of vehicles The network will classify each Image to its type, after adjusting the images, making the appropriate changes, turning them gray, and discovering the edges and lines.After the images are ready, the training process will begin, and after the training process is finished, we will produce classification results, and then we will test with a new set of images.One of the most important applications of this project is to abide by the paving places of cars, trucks, and vehicles in general, as if a picture was entered as a car for the car sample, which is a truck, for example, this will give an error where the network will discover this by examining and classifying it. As a truck, we discover that there is a violation of the paving laws
المراجع المستخدمة
Deep convolution neural networks for vehicle classification
يمكن أن تكون مشاكل تصنيف المستندات متعددة الملصقات (MLDC) تحديا، خاصة بالنسبة للمستندات الطويلة ذات مجموعة علامات كبيرة وتوزيع ذيل طويل على الملصقات. في هذه الورقة، نقدم شبكة اهتمام نفعية فعالة لمشكلة MLDC مع التركيز على تنبؤ الكود الطبي من الوثائق ا
تم في هذا البحث التعرف على الطائرة المسيرة UAV كجملة غير خطيّة و تمّ تحصيل
نموذج محاكي لهذه الجملة باستخدام إصدارات AiroSim. في المرحلة الأولى أجري
تقريب النموذج غير الخطي للطائرة بنموذج خطي عند نقطة طيران معيّنة (نقطة توازن)،
و تم تصميم متحكم
يعمل العمل الحديث على تصنيف المعنويات على مستوى جانب الجساب شبكات اتصالا بيانيا (GCN) على أشجار التبعية لتعلم التفاعلات بين شروط الارتفاع وكلمات الرأي. في بعض الحالات، لا يمكن الوصول إلى كلمات الرأي المقابلة لمصطلح الجانب داخل القفزتين على أشجار التب
يعد هجوم حجب الخدمة الموزع على شبكات العربات المتنقلة من أخطر أنواع الهجومات التي يمكن أن تستهدف هذه الشبكات. تكمن خطورة هذا الهجوم في صعوبة اكتشافه كونه ينفذ من خلال التعاون بين أكثر من عقدة مهاجمة ضمن الشبكة، و بسبب تأثيره على استمرار الخدمة التي ت
الغاية من هذا المقال إلقاء الضوء على آلية ومراحل عمل نظام خبير , يقوم بتحديد انتماء وجه مدخل الى أي من تعابير الوجه الستة النموذجية وهي الغضب , الاشمئزاز , الخوف , السعادة , الحزن , الدهشة بالإضافة إلى الحالة الطبيعية .
وذلك بتطبيق خوارزمية تحليل ال