ترغب بنشر مسار تعليمي؟ اضغط هنا

Rackbert: مسبقا مدربين على سبب الإشراف البعيد

ReasonBERT: Pre-trained to Reason with Distant Supervision

340   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نحن نقدم Rackbert، وهي طريقة ما قبل التدريب التي تزيد من طرازات اللغة بالقدرة على السبب في العلاقات الطويلة المدى والسياقات المختلفة المحتملة. على عكس أساليب ما قبل التدريب الموجودة التي تحصدها فقط إشارات تعليمية فقط من السياقات المحلية للنصوص التي تحدث بشكل طبيعي، نقترح فكرة عمومية للإشراف البعيد توصيل قطع النص والجداول متعددة تلقائيا لإنشاء أمثلة تدريبية مسبقا تتطلب منطق طويل المدى. يتم محاكاة أنواع مختلفة من المنطق، بما في ذلك تقاطع أجزاء متعددة من الأدلة، مدفوعة من قطعة واحدة من الأدلة إلى آخر، والكشف عن الحالات التي لا يمكن إجراؤها. نقوم بإجراء تقييم شامل حول مجموعة متنوعة من الأسئلة الاستخراجية التي تربط عن مجموعات البيانات التي تتراوح من قفزة واحدة من قفصات متعددة ومنصات فقط إلى الجدول فقط إلى الهجين والتي تتطلب إمكانيات التفكير المختلفة وإظهار أن Rackberber يحقق تحسنا ملحوظا على مجموعة من القوية خطوط الأساس. تظهر تجارب قليلة أكثر أن طريقتنا السابقة للتدريب على تحسين كفاءة عينة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

لأكثر من ثلاثين عاما، قام الباحثون بتطوير وتحليل طرق لتحريض الأشجار الكامنة كهدوث لنهج التحليل النحوي غير المقترح. ومع ذلك، لا تزال الأنظمة الحديثة لا تؤدي بشكل جيد بما فيه الكفاية مقارنة بنظيراتهم الخاضعة للإشراف للحصول على أي استخدام عملي باسم التع ليق الهيكلية للنص. في هذا العمل، نقدم تقنية تستخدم إشراف بعيد في شكل قيود سبعة (أي عبارة قوية) لتحسين الأداء في تحليل الدوائر الانتخابية غير المزدوجة. باستخدام عدد قليل نسبيا من قيود الأمان، يمكننا تحسين الإخراج بشكل كبير من Diora، وهو نظام تحليل غير مناسب بالفعل منافسة. بالمقارنة مع التعليق التوضيحي في شجرة التحليل الكامل، يمكن الحصول على قيود Span مع الحد الأدنى من الجهد، كما هو الحال مع معجم مشتق من ويكيبيديا، للعثور على مباريات نصية دقيقة. تجاربنا تظهر قيود الأمان على أساس الكيانات على تحسين تحليل الدوائر الانتخابية على بنك WSJ Penn TreeBank الإنجليزية بأكثر من 5 F1. علاوة على ذلك، تمتد طريقنا إلى أي مجال يتم فيه تحقيق قيود سبعة بسهولة، وكدراسة حالة نوضح فعاليتها من خلال تحليل النص الطبي الطبيعي من مجموعة بيانات الحرفية.
يحتاج تحليل الأدبيات العلمي إلى التعرف على الكيان المسمى بشكل جيد (NER) لتوفير مجموعة واسعة من المعلومات للاكتشاف العلمي. على سبيل المثال، يحتاج أبحاث الكيمياء إلى دراسة العشرات إلى مئات أنواع الكيانات المتميزة والجمالية المميزة، مما يجعل التعليق الت وضيحي ثابت ودقيقا صعبا حتى للحشود من خبراء المجال. من ناحية أخرى، يمكن الوصول بسهولة إلى أونتالولوجيات خاصة بالمجال وقواعد المعرفة (KBS) بسهولة، أو شيدت، أو متكامل، مما يجعل الإشراف البعيد واقعية للكيمياء النيذبة الناشئة. في الإشراف البعيد، يتم إنشاء تسميات التدريب عن طريق مطابقة تذكر في وثيقة مع المفاهيم في قواعد المعرفة (KBS). ومع ذلك، فإن هذا النوع من مطابقة KB يعاني من تحديين رئيسيين: التعليق التوضيحي غير الكامل والشروح الصاخبة. نقترح كيمنر، وهي طريقة توجيهية، تحت مضاد المسترد بها، تحت إشراف صاخبة للكيمياء النيذاري المحبوسين عن هذه التحديات. إنه يرفع هيكل OnTology لنوع الكيمياء لتوليد ملصقات بعيدة مع أساليب رواية من الغموض متعددة الأطراف متعددة الأطباق متعددة الأطباق. إنه يحسن بشكل كبير من توليد التسمية البعيدة للتدريب على تسلسل التسلسل اللاحق. نحن نقدم أيضا مجموعة بيانات من الخبراء، وكيمياء NER مع 62 نوعا من كيمياء كيمياء دقيقة (على سبيل المثال، المركبات الكيميائية والتفاعلات الكيميائية). تظهر النتائج التجريبية أن CHEMMNER فعالة للغاية، مما يتفوق بشكل كبير على أساليب NER-Artication NER (مع تحسن درجة F1 المطلقة).
في تصنيف علاقة الخطاب الضمني، نريد التنبؤ بالعلاقة بين الجمل المجاورة في غياب أي اتصال خطاب علني. هذا أمر صعب حتى بالنسبة للبشر، مما يؤدي إلى نقص البيانات المشروح، وهي حقيقة تجعل المهمة أكثر صعوبة في نهج التعلم الآلي الإشراف. في الدراسة الحالية، نؤدي تصنيف علاقة الخطاب الضمني دون الاعتماد على أي علاقة ضمنية المسمى. نحن غاضب من عدم وجود بيانات من خلال تفسير العلاقات الضمنية لتقليل المهمة إلى مشكلتين فرعيين: نمذجة اللغة وتصنيف علاقة خطاب صريحة، مشكلة أسهل بكثير. تبين نتائجنا التجريبية أن هذه الطريقة يمكن أن تتفوق حتى الآن على الرغم من أن الحديث، على الرغم من أن تكون أبسط بكثير من النماذج البديلة لأداء مماثل. علاوة على ذلك، نوضح أن الأداء المحقق قوي عبر المجالات كما اقترحته التجارب الصفرية في مجال مختلف تماما. يشير هذا إلى أن التطورات الحديثة في النمذجة اللغوية جعلت نماذج لغة جيدة بما فيه الكفاية في التقاط علاقات بين الجملة دون مساعدة من علامات الخطاب الصريحة.
حقق نماذج اللغة المدربة مسبقا بشكل جيد (LMS) نجاحا هائلا في العديد من مهام معالجة اللغة الطبيعية (NLP)، لكنها لا تزال تتطلب بيانات مفرطة الحجم في مرحلة ضبط الدقيقة. ندرس مشكلة LMS المدبرة مسبقا باستخدام إشراف ضعيف فقط، دون أي بيانات معدنية. هذه المشك لة تحديا لأن قدرة LMS عالية تجعلها عرضة للاحتفاظ بالملصقات الصاخبة الناتجة عن إشراف ضعيف. لمعالجة هذه المشكلة، نحن نطور إطارا للتدريب الذاتي للتناقض، جيب التمام، لتمكين LMS الرصيف مع إشراف ضعيف. تدعمه التنظيم البسيط والنعيد القائم على الثقة، فإن إطار عملائنا يحسن تدريجيا من تركيب النموذج مع قمع انتشار الأخطاء بشكل فعال. تشير التجارب على التسلسل، الرمز المميز، ومهام تصنيف زوج الزوج الحكم إلى أن نموذجنا يتفوق على أقوى خط أساس عن طريق الهوامش الكبيرة وتحقق أداء تنافسي مع أساليب ضبط صاخبة بالكامل. تنفيذنا متاح على https://github.com/yueyu1030/cosine.
في حين أن النماذج اللغوية المدربة مسبقا (PLMS) هي محلول الذهاب لمعالجة العديد من مشاكل معالجة اللغة الطبيعية، فإنها لا تزال محدودة للغاية في قدرتها على التقاط ومعرفة المعيشية المشتركة. في الواقع، حتى إذا كانت المعلومات متوفرة في شكل قواعد منطقية تقري بية (ناعمة)، فليس من الواضح كيفية نقلها إلى PLM من أجل تحسين أدائها لمهام التفكير الاستنتاجي. هنا، نهدف إلى سد هذه الفجوة من خلال تدريس PLMS كيفية التفكير مع قواعد القرن الناعمة. نقدم مهمة التصنيف حيث، بالنظر إلى الحقائق والقواعد الناعمة، يجب أن تعيد PLM التنبؤ باحتمال فرضية معينة. نقوم بإصدار بيانات البيانات الأولى لهذه المهمة، ونقترح وظيفة الخسارة المنقحة التي تمكن PLM لتعلم كيفية التنبؤ بحتميات دقيقة للمهمة. تظهر نتائج التقييم الخاصة بنا أن النماذج الناتجة عن القسرية تحقق أداء عال للغاية، حتى على القواعد المنطقية التي كانت غير مرئية في التدريب. علاوة على ذلك، فإننا نوضح أن المفاهيم المنطقية التي أعربنا عنها القواعد يتم نقلها إلى النموذج الدقيق، مما يؤدي إلى نتائج أحدث النتائج على مجموعات البيانات الخارجية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا